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ABSTRACT 
Everyday predictive systems typically present point predic-
tions, making it hard for people to account for uncertainty 
when making decisions. Evaluations of uncertainty displays 
for transit prediction have assessed people’s ability to extract 
probabilities, but not the quality of their decisions. In a con-
trolled, incentivized experiment, we had subjects decide when 
to catch a bus using displays with textual uncertainty, uncer-
tainty visualizations, or no-uncertainty (control). Frequency-
based visualizations previously shown to allow people to bet-
ter extract probabilities (quantile dotplots) yielded better deci-
sions. Decisions with quantile dotplots with 50 outcomes were 
(1) better on average, having expected payoffs 97% of optimal 
(95% CI: [95%,98%]), 5 percentage points more than con-
trol (95% CI: [2,8]); and (2) more consistent, having within-
subject standard deviation of 3 percentage points (95% CI: 
[2,4]), 4 percentage points less than control (95% CI: [2,6]). 
Cumulative distribution function plots performed nearly as 
well, and both outperformed textual uncertainty, which was 
sensitive to the probability interval communicated. We dis-
cuss implications for realtime transit predictions and possible 
generalization to other domains. 
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INTRODUCTION 
Mobile devices provide a way to quickly access quantitative 
predictions to inform everyday decisions. Predictive appli-
cations help people make quick decisions about what outfit 
to wear to suit the weather, how much time to allocate for 
a trip, or when to leave to catch a bus. People are aware 
of the potential for uncertainty when interacting with predic-
tions in everyday domains like weather [17, 18, 16] or transit 
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[20]. However, many domains applications present quantita-
tive predictions as point estimates of the most likely outcome, 
conflicting with users’ expectations and how events unfold in 
real life. A realtime transit application might predict a bus to 
come 10 minutes from now (a point estimate), but in reality 
there is uncertainty in this prediction: traffic might cause the 
bus to be late, location sensing error might mean the bus is 
actually closer or further away than predicted, and so on. 

Communicating the uncertainty in a prediction–by conveying 
that outcomes other than the best point estimate are possible– 
can help people make better decisions in everyday situations. 
For example, when presented with uncertainty in a weather 
forecast, people make more economically appropriate deci-
sions than those who receive weather forecasts alone [16], and 
a better understanding of uncertainty can also improve trust in 
a system [21]. However, for uncertainty information to help in 
everyday circumstances, it must be presented in ways that non-
experts can understand. Displaying a probability distribution 
over possible bus arrival times may not necessarily improve 
people’s decisions, especially if they do not understand what 
is being represented or do not have time to incorporate it into 
their decisions. The design of uncertainty representations 
should also account for users’ needs to make quick, in the 
moment-decisions, such as when they glance at a mobile dis-
play [20]. Presenting too much information risks confusing 
people, rather than helping them make better decisions. 

Prior work demonstrates that people can accurately extract 
probabilities relevant to realtime transit decisions from discrete 
outcome uncertainty representations called quantile dotplots 
[20, 34]. Quantile dotplots are particularly appropriate for 
space-constrained mobile predictive displays like bus arrival 
time applications, because they present an abstraction of a 
probability density plot that enables thinking about probabil-
ities in terms of counts instead of areas (making it easier to 
answer questions like what is the chance the bus will arrive 8 
minutes from now or later?). While extracting probabilities 
from these visualizations has been shown to be more precise 
[20], it is not known if quantile dotplots enable better decisions 
when compared to lower-fidelity representations of uncertainty 
such as intervals or text. For example, a simple text description 
that a bus has a high (e.g., 80%) chance of arriving 5 minutes 
from now or later may be all a user needs to make their deci-
sion. Different display types, which simplify uncertainty to 
different degrees, could vary in their effectiveness for support-
ing decision-making. Some may also be easier to learn to use 
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or adapt better to a range of circumstances—thereby better 
meeting the needs of users who rely on mobile predictions on 
a daily basis. 

To address these questions, we present the results of a large 
crowdsourced online experiment in which we evaluated how 
ten different uncertainty representations affected people’s de­
cisions in a realtime bus-catching scenario. Participants were 
given transit predictions and asked to decide when to catch a 
bus. The bus’s arrival then was simulated (via a random draw 
from a distribution) and the outcome of their choice displayed. 
To simulate decision-making with real-world stakes, we re­
warded subjects based on events that occurred due to their 
decisions. For example, subjects could earn more money if 
they waited less time at the bus stop. 

Our findings extend prior research on presenting uncertainty in 
everyday predictive systems in multiple ways. By comparing 
decisions made from various visual and textual representa­
tions of uncertainty to decisions made without uncertainty 
information, we address the question of whether present­
ing uncertainty improves decision making over point esti­
mates alone in a bus arrival time context. We show that 
uncertainty information can support more rational decisions 
despite the space constraints of mobile displays. We find that 
uncertainty displays outperform no-uncertainty displays, with 
expected payoffs that are about 97% of the expected payoff 
under the optimal strategy, about 5 percentage points more 
than displays without uncertainty. 

Our experiment included displays with a range of uncertainty 
representations: discrete outcome uncertainty displays (quan­
tile dotplots), cumulative distribution function (CDF) plots, 
probability density function (PDF) plots, textual uncertainty 
displays, and intervals. This allows us to identify whether 
higher fidelity uncertainty displays that allow people to 
better estimate probabilities also allow them to make bet­
ter decisions in a bus arrival time context. We find that 
several types of visualizations previously shown to support 
more precise probability extraction, including quantile dot-
plots [20] and CDFs [13], also lead to more optimal (i.e., 
accurate and consistent) decisions: these displays lead to ex­
pected payoffs that are higher than lower-fidelity and/or less 
perceptually effective representations, like text, intervals, or 
PDFs, by anywhere from about 1 to 5 percentage points. We 
find that CDFs, which have been suggested to be difficult 
for the public to interpret in past work [20, 13], perform bet­
ter than PDFs and interval plots that are often thought to be 
simpler to interpret. 

Quantile dotplots and CDFs may perform well because they al­
low more accurate estimation of probability intervals [20, 13]. 
If people can learn to correctly estimate uncertainty from these 
plots and correctly incorporate that uncertainty into their deci­
sions, they should be able to make better decisions—but do 
they? We investigate how decision quality improves over time 
as a user calibrates their usage; that is, if and how well peo­
ple learn to more effectively incorporate uncertainty into 
their decisions by observing the outcomes of their prior 
decisions. We examine how decision performance with those 
displays changes over time with displays of varying fidelity 

and theoretical estimation accuracy. We find that those dis­
plays with the best theoretical estimation accuracy were also 
the best-performing displays: Decisions with these displays 
improved in mean decision quality by about 5 percentage 
points over the course of the study; decisions with these dis­
plays also became more consistent over time, having a reduc­
tion in standard deviation of about 4 percentage points.1 

Together, our results demonstrate that non-experts can learn to 
incorporate uncertainty into bus-catching decisions, making 
better decisions from a space-constrained display in a time-
constrained context. We also demonstrate a methodology for 
assessing decision quality with uncertainty displays. Our re­
sults contribute some of the first (to our knowledge) evidence 
that displays that allow for accurate extraction of probabilities 
in a bus arrival context also lead to more optimal decisions, 
and that people can learn to use such displays over time. We 
also demonstrate that, by both raising average decision qual­
ity and reducing variance, transit uncertainty displays allow 
the majority of the population of users (not just the best and 
average users) to make better decisions, a important trait for 
displays designed for lay audiences. 

BACKGROUND 
Prior work has studied both the benefits and challenges to com­
municating uncertainty, and has developed various techniques 
aimed at communicating uncertainty in everyday contexts. 

Challenges and Benefits of Communicating Uncertainty 
People have well-documented tendencies to misinterpret un­
certainty in systematic ways. A large body of research in 
judgment under uncertainty and promoted most famously by 
Tversky and Kahneman [32] shows, for example, how peo­
ple have trouble understanding statistical principles that gov­
ern uncertainty like the relationship between sample size and 
variance [31]. In the context of presenting predictions for 
everyday decisions, uncertainty contributes ambiguity in pre­
dictions, which designers may perceive as confusing to users. 
As a result, designers may view communicating uncertainty in 
interfaces, especially in systems that are designed to support 
quick, everyday decisions, as daunting or even undesirable to 
users. 

Various studies, however, have shown that communicating 
uncertainty can help people make better decisions than those 
made when uncertainty is not communicated (e.g., [18, 24, 
29, 10, 19, 5]). In a scenario in which people were asked to 
make decisions that a city administrator would have to make 
when faced with potential inclement weather, people presented 
with information about uncertainty in the forecasts made better 
decisions than those not presented with that information [24]. 

Presenting only point estimates can give people a false sense 
of precision, leading them to believe an estimate or prediction 
is more precise than it truly is. For example, people have been 
shown to interpret measurements from body weight scales as 
overly precise [21]. In contrast, when people have a better 
1Since we consider increasing average decision quality and reducing 
variance in decision quality both to be important, we will generally 
refer to displays that improve either of these metrics to have better 
performance. 



understanding of the uncertainty in their measured weight, 
their trust in the system improves, as users can better account 
for day-to-day fluctuations in weight [21]. In other contexts, 
such as transit, people understand that displayed predictions 
are uncertain and may wish they have access to information 
about that uncertainty to inform their decisions [20]. 

Techniques for Communicating Uncertainty 
Concerns about overburdening the user have prompted some 
science communication experts to develop simplified, qualita­
tive descriptions of uncertainty (e.g., using phrases like “very 
likely”, “likely”, “unlikely”, etc to describe how likely an out­
come is [1, 10]). However, different people may interpret the 
same qualitative expression of uncertainty differently [33], and 
interpretations may also change depending on context [35]. 

More recent research has demonstrated that non-experts can 
understand and benefit from more expressive representations 
of uncertainty in the transit domain. One study compared 
a point estimate versus a gradient plot to communicate re­
maining range for an electric vehicle [19]. The gradient plot 
reduced driver anxiety about range as they completed a driv­
ing task. Another study presented people with gradient plots 
depicting train journeys and connections, including alternate 
connections [37]. Compared to other journey planning tools, 
users were better able to understand delays and their effects 
on the trip. 

In the work closest to our study, Kay et al. [20] developed 
and evaluated visualizations depicting uncertainty in bus ar­
rival time predictions. The visualizations were designed to be 
glanceable; in other words, to allow for quick in-the-moment 
decisions to be made. Inspired by prior work on the benefits of 
frequency framings for improving statistical reasoning from 
the fields of cognitive psychology [9] and visualization [8, 
12], Kay et al. [20] developted a discrete outcome adaption 
of a PDF called a quantile dotplot. They found that dotplots 
had a 1.15x reduction in variance of people’s estimates of 
probability intervals compared to other plots tested (PDFs and 
stripe plots[6]). However, they did not evaluate the effect of 
these displays on decision-making (only on uncertainty extrac­
tion), and did not evaluate simpler encodings of uncertainty 
like intervals or textual uncertainty. It is possible that simple 
text descriptions of uncertainty, accompanied with numeric es­
timates to reduce ambiguity, might lead to better outcomes for 
some users. We extend Kay et al. [20] by evaluating a range 
of representations, including no-uncertainty displays, text and 
interval displays, discrete outcome displays, and continuous 
visualizations; and use incentives to evaluate decision quality. 

While a few prior studies on uncertainty visualization designed 
realistic tasks in which subjects make decisions (e.g., [5, 23, 
36]), relatively few evaluations of uncertainty visualizations 
take steps to incentivize subject decisions by simulating re­
wards and consequences after a decision is made (a few ex­
ceptions being [11, 18]). Without these incentives, subject 
decisions may not resemble the decisions that people outside 
of a controlled experiment would make. Many real-world 
decisions involving uncertainty include penalties not just for 
an “incorrect” decision, but also for precautionary actions. 
For example, taking an umbrella to work incurs the “cost” of 

having to carry the umbrella all day and remembering to take 
it home. Additionally, in many real-world decision settings 
in which people make similar decisions on a regular basis, 
people have the ability to adapt their decision-making strategy 
based on the outcome of prior decisions. Someone using a 
mobile weather application, for example, may make changes 
to how they use uncertainty information based on whether they 
were caught without an umbrella in the rain in a prior situation. 
Experimental paradigms that do not provide concrete feedback 
on outcomes prevent subjects from such calibration. 

Psychology researchers interested in how individuals make 
decisions from uncertainty in weather forecasts have applied 
a method that uses financial incentives (awarded through a 
utility function, as used in experimental economics [4]) to mo­
tivate subjects [26]. When applied to a given decision-making 
situation, a properly informed utility function enables evalua­
tion of a decision based on the merits of its outcome relative to 
other decisions and their outcomes. Such an economic frame­
work, in which subjects are informed of monetary rewards and 
penalties associated with different decision outcomes, also 
makes it possible to define an unambiguously “correct” de­
cision in any given context in the form of the decision that 
maximizes payoffs. Joslyn and colleagues use this paradigm 
to evaluate how uncertainty affects the decisions that can be 
made around weather forecast [17, 24, 18]. We adapt a sim­
ilar financial incentive framework to explore the effects of 
uncertainty displays on decisions around real time bus arrival 
data. 

INTERFACE AND UNCERTAINTY REPRESENTATIONS 
We adapted the interface of OneBusAway (OBA), a real-time 
bus arrival time application, for use in our study. We modified 
the interface to incorporate predictive distributions based on 
Kay et al. [20], represented using uncertainty displays drawn 
from the literature. 

Adapting OneBusAway 
We selected OneBusAway as a model for our experimental in­
terface because of its proven effectiveness [7] and widespread 
use in the real world. OneBusAway is a open-source realtime 
transit application used in six US cities or regions and two 
other international cities. To use OBA, an individual opens the 
application and selects a nearby transit stop. The interface then 
displays predicted departures for that stop, including recent 
departures (Figure 1.A). 

With the goal of customizing a design to maintain the general 
look and feel of OBA, we followed an iterative design process. 
We improved our designs to better aid realtime decision-making 
by integrating feedback gathered from guerrilla usability tests 
[15] conducted with colleagues, along with pilot runs of our 
experimental platform with more than 80 pilot participants. We 
used a think-aloud protocol during in-person feedback sessions 
as well as during in-person pilot runs of our experiment. During 
these think-alouds, pilot subjects explained their rationale for 
a decision, often giving insight into how a representation lead 
them to a certain misunderstanding. We revised each represen­
tation to minimize common misconceptions. 



Figure 1. (A. left) Build of OneBusAway mobile application used for the 
Seattle Metropolitan Area as of September 2017. (B. right) Example of 
interface with a dot50 condition as it would appear to subjects. 

We made the necessary modifications which allow for uncer­
tainty representations to be displayed while preserving both 
the overall look and feel of the application and information 
displayed. (Figure 1.B shows how we modified the layout of 
the current OBA build. Figure 2 provides an example of the 
two variations tested in our experiment (arrival and no arrival)). 

In our observations of how people use OneBusAway, we saw 
that people often scan the different entries, comparing differ­
ent buses and deciding which they might take. However, in 
representations that present bus arrivals spatially on a timeline, 
this creates a problem: the information for many buses could 
appear off the screen to the right, and thus be unavailable to 
the viewer. To address this, we implemented a content-aware 
scroll animation [14] that shifts the time axis of each bus to 
the center of the screen upon scrolling. In other words, as 
the user scrolls to later buses, the time axis shifts to the left, 
centering predictions that occur further to the right in time 
on the timeline. In cases where even this automatic scrolling 
cannot display a prediction, the label for point predictions of 
later busses “stick” to the right edge of the screen(as seen in 
the bottom row of Figure 1.B). This ensures all predictions 
are available to the user in some form, and facilitates compar­
isons among buses without reducing the horizontal scale of 
the timeline to unreadable sizes. 

From feedback gathered in our pilot experiment, we choose 
to omit annotations informing a rider how late or early a bus 
is relative to its scheduled arrival time. In early runs of our 
pilot experiment, we found pilot subjects were using “late” 
annotations incorrectly in their decision-making process. Late 
annotations in OBA inform a rider on how late or early a bus 
may arrive compared to the original scheduled arrival time 
of the bus. However, riders cannot accurately determine if 
a bus will come earlier or later based off the late annotation 
alone because the factors that make a bus late will differ from 
situation to situation. Similar to the real-world, the late annota­
tions in our interface did not encode any accurate uncertainty 
information not already accounted for in the predictive distri­
bution (the predictive distributions, which are based on models 

from Kay et al., already account for uncertainty caused by a 
bus being later than its scheduled time). In our pilots, some 
participants indicated that they would treat these annotations 
as some sort of indicator of uncertainty. Thus we removed the 
late annotations to reduce noise in our measurements caused 
by some participants misusing this cue. 

Bus Arrival Time Predictive Distributions 
To develop displays of probabilistic predictions of bus arrival 
times, we needed a model of probabilistic bus arrival times 
to ensure our approach was effective on realistic-looking pre­
dictions.We adopted the model developed by Kay et al. [20] 
(described in more detail in their supplemental materials). 
They collected bus arrival data and OBA predictions from 
the Seattle Metropolitan area, and fit a Box-Cox t regression 
model [25] to them. From their model, we generated a set 
of distributions resembling "typical" bus arrival predictions 
(not overly narrow or overly wide; see supplemental material). 
Each predictive distribution has a single most probable arrival 
time (the mode) a minimum of 5 minutes from “now” (0) a 
maximum of 25 minutes from “now”. 

Uncertainty Displays 
We developed a set of experimental conditions representing 
different uncertainty displays that allowed us to ask, at a high 
level, if uncertainty information improves decision-making 
about bus arrival times, how expressive should a representation 
be, and what framing of uncertainty (e.g., discrete outcome, 
interval, etc.) is most effective. Our no uncertainty condition 
represents the status quo point estimate depiction used in many 
current transit systems. 

We choose display types based on prior work, described below. 
Additionally, prior work on communicating uncertainty in OBA 
found that while bus riders want to see uncertainty information, 
they also still want to see point estimates [20]—point estimates 
may aid glanceability in the quick decision-making context of 
realtime transit. Consequently, we designed two versions of each 
representation: one which displayed a point estimate (most prob­
able arrival time of a bus) and another which did not (Figure 2). 

We discuss the rationale for the inclusion of each representa­
tion below, presenting each condition in an order of increasing 
complexity that we believe they present to a real-time transit 
decision maker. 

No-uncertainty 
This display type represents the sta­
tus quo: it is informationally similar 
to the existing OneBusAway app, 
except we did not include annota­

tions for how late or early a bus’s expected arrival time is relative 
to its scheduled arrival time (for the reasons described above). 

Textual Predictive Intervals: 60%, 85%, and 99% 
Compared to visual representations 
of probabilistic estimates, natural 
language representations provide 
a condensed illustration of a distri­

bution in a possibly easier- (and faster-) to-digest form than 
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Figure 2. Single row of a Dot50 quantitative prediction with a most prob­
able time to arrival supplied (top) and without (below). 

visualizations. Such representations may also be less suscepti­
ble to deterministic construal errors, that is, misinterpreting 
uncertainty as representing some other concept [27]. For ex­
ample, in weather forecasting, misinterpreting the lower end 
of a predictive interval for a daily high temperature as the 
daily low for that day. Reducing an entire distribution to a 
single one-sided prediction interval (here, the probability a bus 
arrives at a certain time or later) necessarily reduces the appli­
cability of the prediction. From person to person and scenario 
to scenario, a different probability level may represent the more 
optimal decision or more appropriate risk tolerance threshold. 
Thus, we included three textual displays to test the sensitivity of 
people’s decisions to the interval used: a 60%, 85%, and 99% 
predictive interval. For each textual representation, we choose 
not to include the timeline included in visualizations, instead 
expressing the most probable arrival time in natural language in 
order to match the form of the representation. 

Interval Plot 
Interval plots are perhaps the most 
common uncertainty visualization. 
We tested interval plots to see if 
the familiarity of the visualization 

allowed people to easily understand the representation and 
make decisions accurately and efficiently. In the use case of 
real-time transit, a predictive interval allows a viewer to un­
derstand a range of plausible arrival times for a bus and the 
chance it will arrive during this range. Interval plots provide 
a quick understanding of the shape of a distribution without, 
perhaps, giving too much extra information. Our representa­
tions plotted the 50% and 95% quantile (equi-tailed) predictive 
intervals from the most probable time of arrival for a bus. 

Probability Density Plots 
Probability density function (PDF) 
plots use an area encoding for prob­
ability that allows people to under­
stand the shape of a distribution at 

a glance, and to estimate intervals by ratios of areas if desired, 
though such estimates are not the most accurate [13, 20]. Al­
though other plots, like quantile dotplots, outperform PDFs for 
estimating probability intervals [20], participants in Kay et al. 
found PDFs more aesthetically pleasing and some specifically 
requested PDFs in interviews [20]. PDFs are also a common 
uncertainty visualization used in a wide variety of contexts. 
Following guidelines described in Kay et al. [20], our display 
normalized the height of probability density visualizations to 
be at most the height of each prediction’s row, so that very 
narrow distributions could be viewed without being clipped. 

Quantile Dotplots 
Kay et al. [20] introduced quantile 
dotplots, which are discrete analogs 
to the common probability density 
plot based on Wilkinson dotplots 

[34]. They found that quantile dotplots allowed people to more 
precisely extract probability intervals than other common un­
certainty visualizations, such as stripe plots and PDFs, and 
speculated that this was because quantile dotplots allow people 
to understand the shape of the distribution while also enabling 
them to estimate probability intervals through counting. When 
the interval of interest is near the edge of a distribution, they 
speculated that counts are processed quickly through subitizing 
(i.e., quickly recognizing small numbers of items). In previous 
work, people’s performance degraded to that of PDFs when 
dotplots with higher numbers of dots were used on a space-
constrained screen [20], lending evidence to this speculation. 
Our experiment tested low density quantile dotplots, displaying 
20 or 50 dots. We refer to quantile dotplots with 20 dots as 
dot20 and quantile dotplots with 50 dots as dot50. 

Probability Density and Interval Plot 
We include a hybrid PDF-interval 
plot to provide a condition that al­
lows a user to selectively attend to 
the level of detail appropriate to 

their needs for a particular situation. PDF-interval plots com­
bine the affordances of both probability density functions and 
interval plots. Our experiment tested a PDF-interval density 
function hybrid taking the shape of the density function and 
marking the central 50% interval within the shape. 

Complementary Cumulative Distribution Plot 
Outside of the transit domain, prior 
work in uncertainty visualization 
found CDFs to be effective for con­
veying some probabilities to the 

public, but could be confusing, particularly if the target at­
tribute to be estimated was a mean [13]. Prior work in the bus 
domain has not tested the feasibility of cumulative distribution 
functions, but found through interviews that multiple bus riders 
indicated that there may be value in using CDFs to communicate 
uncertainty [20]. We tested both the CDF and the complementary 
CDF (CCDF) during our iterative design process. We selected the 
CCDF, since it better corresponds to people’s primary question: 
if I arrive at the bus stop at a certain time, how much of a chance 
to do I still have of catching the bus? If I delay, how does that 
affect my chances of catching the bus? 

ONLINE EXPERIMENT 
To evaluate how well our uncertainty displays support realistic 
decision-making from predicted bus arrival times, we conducted 
an online experiment, with the goal of answering three high-
level questions in a mobile bus arrival time prediction context: 
•	 How do decisions made from uncertainty information com­

pare to those made without uncertainty information? 
•	 How do different uncertainty representations (e.g., dis­

crete versus continuous representations of probability, dis­
plays of varying expressiveness, text, intervals) compare for 
decision-making? 



• How do different uncertainty representations compare for
supporting effective decisions over time?

Experimental Design and Procedure

We used a between-subjects repeated measures design. Sub-
jects in our experiment complete multiple trials, each of which
represents a single decision about when to arrive at the bus
stop given a realistic scenario (described below). The scenar-
ios describe rewards for outcomes like catching the bus or
spending time on a worthwhile activity rather than waiting for
the bus, and penalties for wasting time at a bus stop or missing
the bus (thus missing an important event). After each trial
decision, the subject is presented with an outcome (e.g., “you
arrived at the bus stop after 5 minutes; the bus arrived 1 minute
after you and you caught the bus”) and informed of the rewards
or penalties for their decision. The experimental procedure is
depicted in Figure 3. Uncertainty display type and scenario
were varied between subjects using random assignment.

To provide realistic bus arrival data for the quantitative pre-
dictions used, we generated a set of probability distributions
from the Box-Cox t model described above, presenting them
randomly in each trial. In our version of the OBA interface,
the distribution for the trial would appear at the top of the list
of possible arriving buses and was highlighted as the route in
question for the trial. Before settling on the final setup for our
experiment, we piloted several different experimental setups.
In particular, we looked at the effect of trial length on decision
making, finding that 30-40 trials appeared to allow subjects
time to learn how to use the display while not requiring more
trials than necessary2.

During the experiment, we collected quantitative data including:
the time it took to complete each trial, when the subject decided
to arrive at the bus stop, and the reward given for each trial. In
addition, every 9 experimental trials, subjects gave a rationale
on why they decided to arrive at a bus stop at the specified time.
We used the rationales mentioned previously to gauge how and
why each display effectively or ineffectively aided its user at
making decisions. Upon finishing the experimental phase of our
study, subjects filled out surveys gathering demographic data and
testing their understanding of their assigned display type.

Bus Arrival Scenarios

We constructed scenarios with the goal of creating realistic
decision contexts that bus riders would find familiar. Each
scenario describes a situation where subjects make a decision
of when they will arrive at the bus stop in order to maximize
the number of “coins” they receive (coins are translated into a
bonus in their compensation for participating). Subjects gain
coins for every minute they are able to continue an activity
that is valuable to them (e.g., watching TV at home) before
going to the bus stop, and gain a bonus for arriving at their
intended destination early. Subjects incur a coin penalty for
time spent waiting at a stop for a bus to arrive. In 40 successive
trials on the same scenario, subjects see an arrival prediction
and then specify in how many minutes from the present mo-
ment they would choose to arrive at the stop to catch the bus.
2Pilot experiment analysis can be found in our supplementary mate-
rials in “pilot_exploration.pdf”

Figure 3. The general flow each subject progressed through when com-
pleting our experiment.

Each trial presents a slightly different predictive distribution.
Abbreviated versions of the scenarios are:

1. Brunch With Friends It is Sunday morning and you are
watching your favorite television show before leaving to catch
a bus to meet friends for brunch. You earn 8 coins for every
minute spent watching TV at home and 14 coins for every
minute spent at brunch. You lose 14 coins for every minute
spent waiting at the bus stop.

2. Sunday Festival It is Sunday evening and you are enjoying
a festival before catching a bus to return home to rest before
the busy work week. You earn 14 every minute spent at the
festival and 14 coins for every minute spent at home. You lose
14 coins for every minute spent waiting at the bus stop.

3. Sunday Museum It is a Sunday evening and you are at a
new museum exhibit. It’s raining and you must catch a bus
to return home to rest before a busy work week. You earn 8
coins for each minute remaining at the museum and 17 coins
for each minute spent at home. You lose 17 coins for each
minute spent waiting at the bus stop for the bus.

Rewarding Decisions: Utility functions

To improve the likelihood that subjects in our experiments en-
gaged in realistic decision-making, we adapted a paradigm
commonly used to study decision-making in behavioral eco-
nomics and related fields [4, 29, 10]. In this paradigm, subjects
make decisions and are financially rewarded or penalized (as
they would be in real decision contexts) according to a utility
function. For further realism, we derived the utility function that
determines the payoffs and penalties by soliciting valuations of
the costs and penalties of various outcomes from bus riders.

To assign relative coin values to designated behaviors within
each scenario mentioned previously, a preliminary evaluation
survey asked 10 regular bus riders to provide their monetary
assessments of how much they would have to be compensated
to be increasingly late for an event. In this survey, we used



similar scenarios as described above and asked subjects how 
much they would need to be paid to be a certain number of 
minutes late for the event. We found that responses were 
roughly linear: that is, as a subject arrived increasingly late 
(or missed the event altogether), their monetary assessment 
increased in proportion to the time. Using a linear regression, 
we created normalized values for how an "average" person 
valued their time in the survey. 3 

Decision Metric: expected/optimal payoff 
We derived two measures from the results of our experiment 
to assess decision-making quality on a per-trial basis. The first 
measure, expected payoff, is the average payoff a subject could 
expect to receive based on their response on a given trial. This 
is the expected value of their payoff: the average of the payoff 
for all possible outcomes given the choice a participant makes, 
weighted by the probability of each outcome. Put another way, 
this is the average payoff a participant would get if they always 
made that choice under the same circumstances. We use this 
measure in place of the payoff a participant actually receives 
because actual payoff is affected by the random draw from the 
particular distribution for each trial. Using the expected value 
avoids measurement error caused by this random draw, allowing 
us to better assess how well a person’s choices would do on 
average. 

The second measure we used was optimal payoff : the expected 
payoff under an optimal strategy. This was derived by finding 
the maximum expected payoff possible for a trial over the 
space of possible response times in the experiment: 0 minutes 
to 30 minutes. 

We used the ratio of these measures as a metric of decision 
quality: expected/optimal payoff. An expected/optimal payoff 
that is closer to 1 corresponds to a better decision, or one that 
is more rational [28] in terms of the payoffs for that scenario. 

It is worth noting that the expected payoff in our experiment 
was not a monotonic function of the time chosen—arriving 
as early as possible was not always the correct decision (due 
to penalties for waiting at the stop). As chosen arrival time 
increases, eventually the chance of missing the bus becomes 
so high that expected payoff drops again. For realism, we 
included a backup bus in each scenario guaranteed to arrive 
after any time the user could have chosen, so expected payoff 
does move upwards again if the user arrives so far after the first 
bus that they may be close to catching the bus after it without 
waiting long (though never reaches the expected payoff of 
arriving before the first bus, since catching the backup bus 
guarantees the user to be late to their destination). 

Pilot Results, Model, and Pre-registration 
To calibrate our experimental parameters and to determine an 
analysis plan, we piloted our experiment on Mechanical Turk 
with over 80 pilot participants. We conducted an exploratory 
analysis on those results, and found that expected/optimal 
payoff tended to bunch towards 1 with distributions resembling 
beta distributions. Therefore, we adopted a beta regression 
model, which is suitable for outcomes on a scale from 0 to 1 
3See "valuation_analysis.pdf" in our supplementary material. 

[30]. Because some values of expected/optimal payoff may 
be exactly 1 (when the participant makes the optimal choice), 
and beta regression requires outcomes on (0,1) exclusive, we 
use a correction for values equal to 1 [3]: we replace those 
values with expected payoff/(optimal expected payoff + 1). 

After Kay et al. 2016 [22], we use a mixed-effects Bayesian 
regression model with weakly-informed priors. We include 
display type, trial, and their interaction as fixed effects: this 
allows different visualization types to have different learning 
curves. We include a random intercept for participant, as well 
as a random slope of trial for each participant: this allows 
different participants to have different learning rates. We also 
include a random intercept for each scenario, assuming that 
different scenarios have different baseline difficulties (we did 
not find evidence for different learning rates by scenario in 
our pilot data, so we did not also include a random slope by 
trial here). Finally, we also allowed the precision parameter 
of the beta distribution, φ , to vary according to fixed effects of 
display type, trial, and their interaction: in other words, not 
only could average performance improve over time, but the 
variance of performance could also improve over time. We 
developed this model through exploratory analysis of pilot 
data. We also used pilot data to determine experimental pa­
rameters like number of trials and base pay. We pre-registered 
our Bayesian regression model and priors using AsPredicted 
(https://aspredicted.org/iv7jb.pdf) before collecting and an­
alyzing our final dataset. 

Our experiment was devised in such a way to test not only the 
effect of each condition but also the effect of including a point 
arrival time next to probabilistic distributions; see Figure 2 
top (with point arrival) and bottom (no arrival). However, in 
our pilot results, we found that the two variants had similar 
performance and similar learning curves. Therefore, our pre­
registered (and final) analysis pools the arrival and no-arrival 
variants of each display. We still collected data on these two 
variants (and include them in our supplemental data) in order 
to fuel exploratory analysis for future studies. 

Participants and Compensation 
After multiple rounds of piloting, we deployed our experiment 
on Amazon Mechanical Turk. Our experiment included only 
Master Turkers (i.e., 1,000 HITs completed with a 99.9% ap­
proval rate) and reside in the United States. Turkers could 
complete our experiment once. Each participant was compen­
sated a base rate of $1.25 for completing a HIT as well as a 
bonus compensation proportional to the coins they had earned 
throughout their experimental trials, which ranged from $0.96 
- 2.4 per participant depending on the scenario’s conversion 
rate. Our final analysis included participants who completed at 
least 31 out of 40 trials, as our pilot analysis showed learning 
curves began to level off around 30 trials. 

RESULTS 
The dataset we used for analysis includes the work of 408 
individuals 4. 385 of those subjects submitted complete demo­
graphic information at the end of the experiment. Participants 
4See "final_analysis.md|Rmd|html" in our supplementary material 
for the complete final analysis, and "data/final_trials.csv" for the 

https://aspredicted.org/iv7jb.pdf


completed the experiment in an average of 10 minutes. 45% 
of participants were women and the median age was 35 years. 

Most Conditions Exhibit Learning 
Figure 4 shows the results of our model of expected payoffs 
as a proportion of the optimal payoff (expected/optimal). Our 
model allows us to make marginal posterior predictions: pre­
dictions for how a random subject in a random scenario will 
perform (Figure 4.1). For example, looking at the posterior 
predictive intervals (PPIs), the model predicts that by the last 
trial in dot50, about 50% of decisions will be above 95% of op­
timal (dark blue band), about 80% of decisions will be above 
90% of optimal (lighter blue band), and more than 95% of 
decisions will be above 80% of optimal (lightest blue band). 
Most other conditions exhibit learning like this, although none 
result in as consistent decisions as dot50 does. In some condi­
tions, such as text85 and no-uncertainty, the learning curve is 
quite flat, and many decisions in the final trials are still likely 
to be of lower quality (lower than 70% of optimal in interval, 
text85, and none, judging by the 95% PPIs). 

While these posterior predictions can be more straightforward 
to interpret, it is important to look at the uncertainty in the 
model that drives these predictions. Figures 4.2 and 4.3 do 
this, showing quantile credible intervals around the condi­
tional mean and standard deviation for each trial. In contrast 
to the marginal posterior predictions, which average over the 
random effects for participant and scenario, these estimates 
are conditional: they show the mean and standard deviation 
of expected/optimal for a "typical" participant and "typical" 
scenario. These estimates show that learning improves both 
the average performance and the standard deviation of per­
formance: people’s decisions are more consistently rational, 
particularly in dot50, cdf, and dot20 conditions, with mean 
expected/optimal reaching around 95% of optimal (Figure 4.2) 
and standard deviation of expected/optimal reaching around 
4 percentage points (Figure 4.3). Textual uncertainty condi­
tions vary: text99 and text60 reach nearly similar performance, 
while text85 exhibits very little learning, and appears more 
comparable to the no uncertainty condition, where neither 
average performance nor consistency improves much. 

Dotplots, CDFs Converge on Better, Consistent Decisions 
It is difficult from Figures 4.2 and 4.3 to directly compare 
performance in the final trial across conditions. To more 
directly compare performance, we also look at estimated dif­
ferences in the conditional means (Figure 5.1) and standard 
deviations (Figure 5.2) in the last trial. These differences are 
shown against control (no uncertainty) and dot50 (the best-
performing condition).5 

By the final trial, dot50, cdf, and dot20 out-perform most other 
conditions in both mean and standard deviation by a few per­
centage points (Figure 5). While this may seem a small effect, 
combining a higher mean with lower variance can result in much 

data. Our supplement is also available at https://github.com/Michael­
Fernandes/uncertainty-displays-for-transit (DOI: 10.5281/zen­
odo.1136329) 
5The interested reader is referred to "final_analysis.md|Rmd|html" in 
our supplementary material for a plot of all pairwise comparisons. 

more consistent decisions. Dot50, for example, has a standard 
deviation in the last trial that is around 4 percentage points or 
more less than pdf, pdfinterval, text85, and control (last panel of 
Figure 5), combined with a higher mean, this difference drives 
the fact that the spread of predicted decisions in the last trial is 
on the order of 20 percentage points less: compare the extent of 
the 95% PPIs in Figure 4.1 between those conditions. 

Dot20 did not have as clear a difference in performance against 
the best-performing text conditions as dot50 did, but still yielded 
more consistent decisions: e.g., average decision quality in 
dot20 is similar to text99 (mean difference = -0.1 percentage 
points, 95% CI [-2.2,2.0]), but text99 had higher variance by 
about 1.3 percentage points (95% CI [0.2,2.6]). In other words, 
dot20 likely supports better decisions for the worst-performing 
users compared to text99. 

DISCUSSION & LIMITATIONS 
Our work provides evidence that predictions of bus arrival 
times with uncertainty can be a more effective form of quan­
titative prediction than point estimates alone. Displays with 
uncertainty generally performed comparably to or better than 
our control condition (no uncertainty) in terms of mean de­
cision quality and variance in decision quality as measured 
by expected/optimal payoff. Further, our results found that 
visualizations that lead to more accurate estimates—CDFs [2, 
13] and low-density quantile dotplots [20] with 20 or 50 dots— 
also lead to the best decisions in a realtime transit prediction 
context. Perhaps due to the advantages of frequency-based rep­
resentations for reasoning about uncertainty [9, 12], quantile 
dotplots with 50 outcomes led to better decisions than CDFs, 
if slightly. 

Sensitivity of Text Displays to Probability Level 
While low density quantile dotplots and CDF plots produced 
the most consistent and accurate decisions, some textual dis­
plays approached the same performance: text99 and text60 
performed nearly as well as dot20 (the lower-performing of 
the two dotplots). Meanwhile, decisions produced by text85 
were poor, and exhibited little learning. In other words, text de­
cision quality was inconsistent (compare the text estimates in 
Figure 5): it appears that the effectiveness of textual displays 
is sensitive to the probability level displayed. 

We believe this sensitivity is related to text displays’ expressive­
ness. When a visualization is more expressive, allowing accurate 
estimates of various intervals, we expect people are more able 
to adapt the uncertainty information to new situations as the 
predictions (and their priorities) change. For example, the opti­
mal choice in some situations may be to arrive at the bus stop 
at a time with very high probability of catching the bus (say 
99%—perhaps in the case of an important meeting). In other 
cases, where the cost of missing the bus is lower, a reasonable 
gamble on missing the bus may be worth a shorter expected wait 
time (say 85%—like in the case of a casual lunch with friends). 
Because text intervals show only one interval estimate, people 
cannot adapt their decisions as easily to the costs and benefits 
of a particular situation. Thus, we have no reason to believe 
that text99 or text60 will always yield better performance than 
text85. This demonstrates a particular difficulty with text displays 

https://github.com/Michael-Fernandes/uncertainty-displays-for-transit
https://github.com/Michael-Fernandes/uncertainty-displays-for-transit
https://doi.org/10.5281/zenodo.1136329
https://doi.org/10.5281/zenodo.1136329
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Figure 4. Fit lines from the model of the ratio of participants’ expected payoffs to the expected payoff under an optimal strategy. Performance on 
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such as the ones tested: they may be simple but not sufficiently 
flexible to be adapted to new contexts. 

Based on previous research on how people interpret probabil­
ities close to 100% [38], people may also interpret 85% and 
99% intervals as communicating nearly the same thing (‘high 
chance’), possibly leading to overconfidence in text85. Mean­
while, the 60% interval was narrow (usually 1-3min left of 
the mode), giving less sense of the distribution shape but rep­
resenting low certainty; perhaps users were more conservative 
to compensate for the low probability it represented. 

Application to Other Domains 
As previously mentioned, past work has shown that CDFs 
[13] and low density quantile dotplots [20] allow for accurate 
probability interval estimation. Our work expands on these 
findings about estimation to show that uncertainty representa­
tions that allow for more accurate probability estimation also 
produce higher quality (more accurate and consistent) deci­
sions. We believe that this grounding in perceptual work on 
estimation (which is reasonable to expect to generalize across 
contexts) suggests that our findings about decision quality may 
also generalize to other contexts in which probability interval 
estimation is important and no single canonical interval is 
known to represent the best decision. 

Limitations & Future Work 
We designed the decisions that subjects made in our experi­
ment to be similar to those made by bus riders when deciding 
to leave for a bus using a realtime transit prediction application. 
We encouraged subjects to make their decisions quickly, and 
rewarded better decisions using payoffs that were informed by 
real-world incentives. Our experiment used the same utility 
function for all participants. In the real world, each rider’s 
utility function will be personal and change according to each 

situation, though participants should still be motivated in our 
experiment to maximize their profit under the utility function 
given to them. 

In the real world, when making decisions on-the-go, bus riders 
will have little time to reflect on the effectiveness of their deci­
sions. Thus, although we based our scenarios on real world 
bus-catching situations, there is a need to study the effects of 
uncertainty displays on longitudinal decision-making in the 
wild. For example, using displays with well-expressed and 
well-calibrated uncertainty, instead of just point estimates, may 
make people feel complicit in bad decisions when they experi­
ence consequences of their decision like missing the bus [20]. 
Future real-world deployments could examine the effects of 
uncertainty displays on blame and decision satisfaction, in 
addition to decision quality. 

CONCLUSION 
In this paper, we demonstrate that including uncertainty dis­

plays in realtime transit decision-making can produce higher 
quality decisions. Using a method adapted from experimental 
economics, we successfully tracked serial decision making to 
evaluate what type of uncertainty displays produced the high­
est quality decisions. We found that cumulative distribution 
function (CDF) plots and low-density quantile dotplots pro­
duce more accurate and consistent decisions compared to other 
uncertainty visualizations, textual displays, and displays with 
no uncertainty. We also found that when using uncertainty 
displays, decision quality can improve over time. The types 
of displays that we have found to be the best for supporting 
decision-making in the transit have also been shown to be more 
accurate at estimating probability intervals more generally, sug­
gesting that our results may generalize to similar situations 
where the same type of uncertainty information would help 
inform decision-making. 
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