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PREFACE 

“It is hardly possible to overrate the value … of placing human beings in contact with others 

dissimilar to themselves, and with modes of thought and action unlike those with which they 

are familiar… Such communication has always been, and particularly in the present age, one 

of the primary sources of progress.” 

JS Mill 

 

“It may make your blood boil, your mind might not be changed. But the practice of listening 

to opposing views is essential for effective citizenship. It is essential for democracy.” 

President Barack Obama 

 

The challenge of increasing individuals’ exposure to and engagement with diverse 

political viewpoints is not merely an academic question for me. From my junior year of 

high school until my junior year of college, I wrote a political blog. It attracted some 

readership, enough to get me credentials to the 2004 Democratic National Convention 

and to be gently teased on The Daily Show. Shortly after the 2004 US Presidential election, 

though, I woke up reflecting that, through my blog, I had communicated almost 

exclusively with like-minded individuals. Yes, some of my readers, and I, had become a bit 

more fired up and perhaps a couple of additional people voted, but the discussion on the 

blog came nowhere near the diverse, thoughtful discussion that I had hoped to have, and 

so I stopped.  

A desire to tackle this problem – to find ways to promote the deliberative 

discourse that had not materialized on my blog, or to find places where it might already 
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occur – motivated me to come to graduate school. This dissertation summarizes the 

efforts my colleagues and I have made on one small but important piece of this problem – 

increasing individuals’ exposure to diverse points of view – over the past five years. 

Like most dissertations, this one ends up being smaller than the original ambition. 

I hope, though, that it moves me, and our community, closer to our goals.  

 

Sean Munson 

12 July 2012 
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CHAPTER I 
 

Introduction 

Diversity in the information people see and attend to can help people and groups make 

better decisions, can help people learn and correct inaccurate beliefs, and can help people 

see ideas with which they do not agree as legitimate. Media policy in the United States has 

long had a focus on promoting audiences’ exposure to diverse information. The rationale 

for this goal has been that accurate beliefs and perceptions are necessary for good 

decision-making and for good governance in democratic society, and that development of 

these accurate beliefs requires some degree of exposure to information that challenges 

one’s existing beliefs and opinions (Frey 1986, Hart et al 2009). 

The Internet has brought more choice for what news and information individuals 

can access. Observers have warned that existing media policies are ill-suited for 

guaranteeing exposure to political diversity in the Internet age, as people are able to 

choose more freely from an ever-increasing variety of sources, many of which cater to and 

present a very narrow range of viewpoints. Given this range of choice, they argue, 

Americans will increasingly live in ideological echo chambers and polarization of different 

political groups will increase (Sunstein 2001, Prior 2007). Republicans and Democrats 

already read different newspapers and watch different TV news stations (Stroud 2007, 

Morris 2007, Iyengar & Hahn 2009). They read different political books (Krebs 2008). 

They even live in different places (Bishop 2008). The sources to which they attend are echo 

chambers: left-leaning and right-leaning blogs rarely link to each other (Adamic & Glance 
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2005) and comment threads contain little disagreement (Gilbert et al 2009). If people 

prefer to avoid hearing challenging views, we may see even greater political fragmentation 

in information consumption as people get better tools for filtering the news based on their 

own reactions and reactions of other people like them. 

In my dissertation research, I sought to understand individuals’ preferences for 

opinion diversity in the political news they access online (Chapter IV) and to develop 

selection (Chapters II-III) and presentation (Chapters IV-V) techniques that increase the 

amount of diversity in the political opinions people access through online news 

aggregators. I also studied whether there are other, nonpolitical spaces where exposure to 

diverse political views may already occur. I found that around half of the total political 

posts on Blogger occur on non-political blogs and I argue that understanding the political 

discussion in such spaces should be part of our community’s research agenda (Chapter 

VI). 

Before discussing this research, I will motivate my studies by briefly reviewing 

selective exposure theory, why exposure to diverse points of view is important, the 

evidence from online environments for and against the type of reading behavior selective 

exposure theory would predict in an environment of choice in information, and how these 

issues relate to news aggregators and other sources of political information online. 

Selective exposure theory  

Long before the Internet, researchers observed that people prefer to access information 

that suits their own opinions and worldview and to avoid information that challenges 

these beliefs (Lazarsfeld et al 1944, Klapper 1960, Berelson & Steiner 1964, Sweeney & 

Gruber 1984). This behavior is one way that people can avoid the uncomfortable feeling of 

cognitive dissonance (Festinger 1957). By selecting confirmatory information, they need 

not reevaluate their existing information or stance and they can reaffirm that they have 

correct beliefs (Kastenmüller et al 2010).  
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Selective exposure theory claims that people prefer to access supporting 

information and avoid challenging information. When people behave consistently with 

these preferences, the information they access supports their existing beliefs and 

preferences, and they are not prompted to go through the difficult process of reevaluating 

their views. Selective exposure literature also describes some conditions under which 

people may or may not act according to that preference (Frey 1986). For example, people 

are less likely to prefer a diet of only agreeable information when they are particularly 

curious about the topic (Frey 1986), when potentially discordant information is expected 

to be particularly useful – such as when they are skeptical of their own beliefs and seeking 

information rather than confirmation (Freedman 1965), or in response to a fairness norm 

(Sears 1965). The preferences described by selective exposure theory also predict how 

people will behave in information environments that offer choice between agreeable, 

disagreeable, and diverse information: given sufficient choice, they will read primarily 

agreeable information.  

Dangers of selective exposure to political information 

This prediction alarms many political theorists, who see exposure to diverse information 

as a prerequisite for many positive outcomes. Society risks losing these positive outcomes 

if people prefer to access only agreeable information and are able to construct a political 

information diet free of discordant information. In this section, I review three positive 

outcomes that can only occur if people are exposed to diverse political news, opinions, 

and information. First, exposure to diverse views is a necessary ingredient in deliberative 

debate, which political theorists argue is necessary for a healthy democracy. Second, 

counter-attitudinal information is necessary for people to learn and for better problem 

solving. Finally, understanding the distribution of opinions is necessary for people to 

accept the legitimacy of decisions with which they may not agree. I discuss these in more 

detail below. 
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First, exposure to diverse viewpoints is one of the necessary prerequisites for ideal 

deliberative debate, along with participants who are open to changing their minds and the 

formulation of arguments in terms of common interests rather than only in terms of 

competing interests of subgroups (Habermas 1962, Dewey 1954). Theorists argue that 

democracy flourishes in societies where political discussion is frequent and frequently 

approaches these deliberative ideals (Cohen 1989, Gutmann & Thompson 2004). If people 

only seek out and expose themselves to agreeable political news or discussion, this debate 

will not occur. Political theorists predict negative consequences resulting from its absence. 

Deliberation experiments have shown that interaction with like-minded people leads to 

polarization: participants tend to end up with more extreme views than they started with 

(Brown 1986, Sunstein 2002, Schkade et al 2007). Selective exposure to reinforcing news 

and opinion articles might also lead to opinion shifts to more extreme positions, and 

fragmentation of the audience to different spaces and sources may lead to discussion of 

articles that leads to even further polarization. Increased polarization would make it 

harder for society to find common ground on important issues. 

Second, exposure to diverse opinions promotes learning and better problem 

solving. When people hold inaccurate beliefs, they must be confronted with information 

that challenges these beliefs in order to correct their understanding (Frey 1986, Hart et al 

2009). Inclusion and consideration of diverse opinions leads to more divergent, out of the 

box thinking, which can improve individual and group problem solving and decision-

making (Nemeth 1986, Nemeth & Rogers 1996). Through exposure to multiple 

viewpoints and perspectives, people become more aware of relevant information and are 

more able to think through all of the outcomes of a decision, and so societies will make 

better collective choices on important matters at all levels of government (Benhabib 1996). 

Finally, there is a natural tendency for people, particularly those in the minority, to 

think that their own views are more broadly shared than they actually are (Sanders & 

Mullen 1982). This tendency is known as the false consensus effect: people can increase 
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their self-esteem by seeing their views as normative (Ross et al 1977). Having a better 

assessment of their true popularity may lead people to accept the legitimacy of 

disagreeable outcomes in the political sphere, rather than concocting conspiracy theories 

to explain how the supposed majority will was thwarted. If citizens feel they have been 

heard, and have heard others’ reasons, they are more likely to accept a decision’s 

legitimacy even if they do not get what they want (Benhabib 1996). Even when people 

reach different conclusions after hearing all of the sides, exposure to and consideration of 

different opinions persuade participants that the opponents’ views have merit (Gutmann 

& Thompson 2004). Achieving this goal, however, can be difficult. When people receive 

evidence that their views are not normative, they can continue to increase their self-

esteem by perceiving people with contrary views as acting according to a situational 

constraint rather than according to their own attitudes (fundamental attribution error, 

Jones & Harris 1967, Ross 1977) or as defective in some way (Ross et al 1977). 

The dangers of selective exposure and the benefits of considering diverse and 

challenging points of view make it a reasonable public policy goal for people to be 

exposed to viewpoints other than their own. The principle of broad distribution of 

information from a diverse array of sources has long been a part of American media 

policy, going back to the First Amendment (Gentzkow & Shapiro 2008, Stucke & Grunes 

2011). In Democracy in America, de Tocqueville wrote about his surprise at the number of 

early periodicals and their willingness to criticize those in power (volume 1, 1835). He 

also praised these periodicals, often quite partisan, for their role in bring people together 

and forming associations (volume 2, 1840). In the twentieth century, newspapers and 

broadcast news provided a digest of topics and editorial opinions for public discussion, 

and, through that common experience, serendipitous encounters with viewpoints other 

than their own (Sunstein 2001). The equal time provision and fairness doctrine, no longer 

in place, as well as antitrust policies toward media companies, have been designed to 
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ensure that these information sources present a range of viewpoints, within the same 

broadcast source or across different sources (Barron 1968, Stucke & Grunes 2011). 

Sunstein and others, however, raise alarms that the Internet’s increased choice of 

news sources and better tools for filtering out disagreeable news will undermine the role 

of media in presenting people with diverse viewpoints (Sunstein 2001, Pariser 2011). 

Whether the goal of exposure to diverse political views can be achieved in an environment 

of individual freedom, however, depends on whether designers succeed in selecting and 

presenting single collections that appeal to people with varying political views, or on 

whether they succeed in creating personalized collections that contain significant 

challenging information but are liked as much or more than collections without such 

challenging information. 

Selective exposure and the Internet  

Even when people prefer agreeable information, environments with limited numbers of 

sources can prevent the expression of such preferences. Research shows that people act on 

selective exposure preferences by selecting among sources rather than by selecting items 

from sources (Lowin 1967, Prior 2007). Though people might prefer a source with entirely 

agreeable items, if their only source choices all present some disagreeable information, 

they will not avoid reading altogether. Thus, in an environment where a modest number 

of media channels served a broad audience, mainstream channels could broadcast the 

news with enough diversity to appeal to a good-sized audience, without a risk of being 

avoided for that programming, and so their audience would have some exposure to 

informational programming that included challenging opinions. Policy decisions 

guaranteed a certain level of diversity among broadcast media, and a large portion of the 

news audience received these reasonably balanced broadcast sources simply by leaving the 

television on after a favorite program, the so-called inadvertent audience (Prior 2007, 
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Bennett & Iyengar 2008). Throughout the latter half of the twentieth century, this limited 

the effects of selective exposure preferences in determining individuals’ actual exposure.  

Technologies that offer more choices and personalization, however, undermine 

this role of broadcast media. They allow for the delivery of more channels, which have 

economic incentives to cater to niche audiences (Mullainathan & Shleifer 2005). 

Considerable evidence shows that people self-segregate into ideological television viewing 

groups (Pew 2004, Stroud 2007, Iyengar & Hahn 2009), while broadcast news audiences 

have declined precipitously (Bennett & Iyengar 2008). Time-shifting, watching 

programming on DVD or on-demand, and watching prime-time entertainment 

programming on channels without news shows has diminished the audience of people 

who inadvertently receive broadcast news by simply leaving on the television. Nearly half 

of Americans watched one of three broadcast news programs in 1970; this had dropped to 

ten percent by 2007 (Prior 2007). Those who seek out news, rather than merely leaving the 

television on, can and do choose news programming that caters to ideological niches 

(Morris 2005, Morris 2007). As people have greater choice in sources, they have greater 

potential to avoid disagreeable news sources or news sources altogether.  

The Internet allows for even larger numbers of niche sources and for 

personalization of the sources that do have broad appeal. In Being Digital (1995), 

Negroponte celebrates the potential for a “Daily Me” – a highly personalized and tailored 

news source,1 but for scholars concerned about negative societal consequences of political 

selective exposure (e.g. Sunstein 2001), the prospect of such news sources is alarming. 

Research presents conflicting evidence about the extent to which people prefer agreeable 

political information and are using the Internet act on those preferences: some research 

finds that people use the Internet to access mostly agreeable political information, while 

other studies suggest that people use the Internet to seek out a greater variety in sources 

                                                       
1 Though Negroponte also allowed that some serendipity is of value, and proposed that people would read a 
“Daily Us” on a “rainy Sunday afternoon.”  
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and to become more aware of political news and events. I describe each line of research in 

turn.  

Less than two decades after Negroponte proposed the “Daily Me,” substantial 

evidence supports the notion that people selectively expose themselves to agreeable 

political opinion in their choices of online information sources. Many surveys of 

individuals’ preferences for news and studies of the traces of behavior on political 

information sites support the conclusion that people seek out agreeable political 

information to the exclusion of counter-attitudinal information. In a 2010 survey, 67% of 

Americans said that they only follow news or topics of interest to them, and 42% of 

American online news readers said that a key factor in their news site selection is the 

ability to customize the news the site presents them (Purcell et al 2010). Adamic and 

Glance found that political bloggers predominantly link to like-minded bloggers (2005), 

and Lawrence et al (2010) found substantial ideological segregation among political blog 

readers. Among the comments on political blogs, Gilbert et al found a 9:1 agreement to 

disagreement ratio, and that similar echo chambers exist on other blog genres as well 

(2009). During the 2004 US election cycle, people’s political preferences motivated their 

choice of information sources across media types, including cable news and the Internet 

(Stroud 2007).  

It is not clear, however, that everyone prefers to be exposed to only reinforcing 

viewpoints or that everyone is taking advantage of the Internet’s affordances to act on 

these preferences. Sears and Friedman reviewed the literature from the 1950s and 1960s, 

finding five studies showing a preference for supportive information only, five showing a 

preference for diversity, and eight inconclusive (1967). In at least one face-to-face 

deliberation environment – structured, small group discussion of healthcare refrom in 

California – people fairly uniformly preferred groups that were moderately 

heterogeneous, neither homophilous nor highly discordant, in their viewpoints (Esterling 

et al, n.d.). Some recent studies support the idea that individuals are using the Internet to 
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seek out a broad range of political opinion and information, a behavior that we will call 

diversity-seeking. Stromer-Galley found that participants in online political discussions say 

that they want and seek out discussions with a diverse range of views (2003). In a summer 

2004 survey, Horrigan et al found that Internet users were more aware of a diverse range 

of opinions than non-Internet users and that they were not using the Internet to filter out 

news and opinion that disagreed with their views (2004). Kelly et al found a diverse 

exchange of views within political USENET groups (2005): indeed, a good predictor of 

whether one person was generally liberal was whether the person’s respondents were 

generally conservative in their posts. They did not see, however, much respect expressed 

between different positions on an issue (as the authors put it, “JS Mill would approve”). 

Papacharissi argues that the heated exchanges on news groups, for all their flaming, 

insults, and incivility, are a positive sign that different opinions are colliding and being 

contested (2004). Even if one favors Mills and Papacharissi’s views of deliberative debate, 

Kelly et al’s findings may not be a particular comfort, as USENET is rapidly falling out of 

favor. 

Another view is that people seek out supportive information but are not averse to 

reading challenging information when they do encounter it. In an online experiment, 

Garrett found that subjects recruited from the readership of left-wing and right-wing sites 

were, on average, attracted to news stories that reinforced their viewpoint but showed only 

a mild aversion to clicking on stories that challenged them. Once they looked at those 

stories, however, they tended to spend more time reading them (Garrett 2009). Garrett 

proposes a theory, which I call support-seeking, that people seek out supporting items, but 

are indifferent about challenging items they encounter, so long as they see a sufficient 

number of supporting items. Gentzkow and Shapiro analyzed 2009 traffic data from 

comScore’s panel of over one million US Internet users and found that ideological 

isolation in people’s online news sources was lower than many feared, and lower than their 
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day-to-day face-to-face interactions, yet higher than their ideological isolation for most 

offline news sources (2011).  

The mixed, and apparently contradictory, results leave two important unanswered 

questions. To what extent do people prefer to access agreeable political information while 

avoiding challenging material? To what extent, and how, are they are using filtering and 

niche-appeal Internet sources to act on such preferences?   

News aggregators 

There are many websites that aggregate political news and opinion, such as Digg, Reddit, 

Google News, and Memeorandum; these are one type of online space where selective 

exposure preferences could be particularly consequential. People, particularly younger 

individuals, are increasingly relying on these sites for their news access. In 2010, 

editorially and algorithmically curated news aggregators (e.g., Google News) were the most 

popular news source for online news users (used by 56% of adult Americans – 68% among 

the 18-29 demographic – who access news online on a typical day), while 7% accessed 

reader-curated news aggregators (e.g., Digg) on a typical day (Purcell et al 2010). Both 

types of aggregators present links to recent articles from blogs and commercial media, and 

some of them also offer a forum for readers to discuss the linked stories. As the news 

aggregator marketplace matures, consumers will have many options to choose from and, 

over time, they will likely gravitate to aggregators that offer the mix of articles and the type 

of discussion that they like best, though other factors, such as price and usability, will also 

influence their choice. 

Selective exposure theory predicts a preference for news aggregators that provide 

readers with only agreeable sets of items. As reviewed previously, though, studies of online 

political information diets show mixed results, so it remains an open question what mix of 

agreeable and challenging articles people would ideally like to see on these sites. As online 

news aggregators, and possibly personalized news aggregators, become an important 
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destination for Americans’ news, scholars and policymakers concerned about selective 

exposure preferences, behavior, and outcomes will want to know the answer to this 

question. If people do prefer agreeable political information, and actively seek it out to the 

exclusion of challenging information, a new question emerges: are there techniques for 

selecting and presenting political news that can encourage people to seek out or at least 

tolerate sources or items that present diverse views?  

The designers of news aggregator sites have a more immediate interest in knowing 

what mix of agreeable and challenging items people want to see, as they want to deliver 

collections of items that make readers want to come back to their sites. From a designer’s 

perspective, there are actually two versions of this question, depending on whether the 

news aggregator will present each reader a potentially different collection of articles, or 

whether the same collection will be presented to everyone. If personalized collections will 

be presented, the question is, “what is the optimal percentage of agreeable items to 

present?” If the same collection will be presented to everyone, the question is, “is it 

possible to keep a set of readers with diverse political preferences satisfied or will groups 

with different political preferences inevitably drift towards using separate aggregator 

sites?” The latter is a very real possibility, as the launch of several avowedly conservative 

competitors to Digg (e.g. Lively Links, GOPHub, and the somewhat awkwardly named R-

igg) or YouTube (e.g. PopModal.com) might suggest, though none of these have yet gained 

the popularity of Digg or YouTube, and many have gone defunct. 

Non-political spaces 

Though policy has focused on exposure to diverse information in news and other formal 

spaces for political discussion, these are not the spaces that political theorists have most 

celebrated and cherished for exposing people to diverse news and opinion. Habermas 

talks about a “public sphere” that brings together people with diverse backgrounds and 

grants them a certain amount of equality as discussants (1962). Eighteenth century growth 
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in journals, lodges, salons, and coffeehouses nurtured a space to talk about politics outside 

of the control of the state. In these discursive arenas, individuals’ status was largely 

disregarded, many had access and were included, and participants would raise issues of 

public concern for discussion. Putnam, in his studies of democracy in Italy (1993) and 

later social capital in America (2000), also celebrated the role of social clubs and activities 

that bring people together for non-political reasons. In choral societies, bowling leagues, 

Kiwanis clubs, and parent teacher associations, participants would develop relationships 

around the shared activity, but this social capital could be repurposed as ideas and 

information, including diverse viewpoints, flowed through these ties. Sunstein expands 

important non-political spaces to include those that promote less formal or protracted 

interactions: the parks, the streets, and the corner market (2001). He describes these 

spaces as “glue” holding diverse groups together. People who may otherwise encounter 

primarily views that affirm their own can have serendipitous encounters in these shared 

spaces.  

Non-political, public spaces many not only bring together people with diverse 

views and backgrounds, but could also do so in a way that has further benefits. Members’ 

desire to protect their social ties within these spaces provides participants with an 

incentive to keep the discussion polite (within the norms of the relationship), to phrase 

arguments in a broader perspective, and to listen to each other (Putnam 2000). 

Unfortunately, the desire to protect their existing relationships in these spaces may 

suppress the expression of and exposure to challenging views. Americans are much less 

likely to bring up politics in social contexts with diverse views (Noelle-Neumann 1993). In 

more recent work, Mutz raises doubts about non-political settings’ abilities to trigger and 

nurture cross-cutting debate (2006). Many voluntary social ties, such as golf club 

memberships, are formed among people from similar backgrounds who share political 

preferences. Mutz actually found a negative correlation between an individual’s number of 

voluntary social associations and their exposure to cross-cutting debate. Among voluntary 
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associations, parent teacher organizations appear to be an exception to this rule, and some 

workplaces also expose individuals to a broader range of opinions (Krebs 2005, Mutz & 

Mondak 2006). Even when Americans do voice political opinions, though, they often go 

to great lengths to distance their opinion from politics (Eliasoph 1998). They preface their 

opinions with statements like “Not to be political but…” and try to cast issues as local or 

personal arguments rather than as part of a larger political debate. 

On the Internet, there are many spaces, such as hobby forums, various interest-

based or personal blogs, and gaming sites, where people come together for shared 

interests. Might these sites be important spaces for cross-cutting political debate? If so, 

could they provide some of the serendipitous exposure to other viewpoints that Sunstein 

and others worry we are losing on the Internet? Or might the Internet’s affordances for 

self-censorship, moderation, and channel-switching mean that people go elsewhere to 

bring up potentially contentious issues? Non-political spaces online have not historically 

received much attention from researchers studying politics online, but it is important to 

understand if political discussion is occurring in them, and, if so, the characteristics of 

that discussion.  

Outline of the dissertation  

A broad research agenda is required to understand individuals’ preferences for political 

information preferences online, and ways to nudge preferences or behaviors. With a focus 

on news and information sites, researchers must work to (1) understand existing 

preferences and behaviors for accessing political information online, (2) explore ways to 

nudge challenge-averse individuals to read or consider more diverse political news, (3) 

study techniques to help people engage with diverse points of views, and communicate 

their own, and (4) evaluate the effects of promoting a diverse information diet. Outside of 

news sites, researchers should study non-political spaces to identify whether political 

discussion occurs there or if politics is treated as taboo. If political discussion does occur 
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in non-political spaces online, researchers should examine whether it offers visitors to 

these sites serendipitous exposure to diverse political views. 

This research agenda is broader than any one dissertation. In my work, I decided 

to take on elements of the first two challenges – understanding people’s preferences and 

behavior and developing and evaluating ways to select and present more diverse content – 

and the fifth challenge, measuring and examining the political discussion that occurs in 

one type of non-political space. Table I-1 presents a summary of my questions and 

findings, by chapter. I did not study ways to increase engagement or the consequences of 

exposure to diverse political views on idea formation, civic engagement, or political 

participation. For the purposes of this work, I limited my definition of diversity to 

collections representing multiple views in order to achieve the goal of exposing people to 

information that may be discordant with their current beliefs. There are other facets of 

diversity that likely matter (for a good discussion, see Garrett & Resnick 2011), but they 

are beyond the scope of this research.  

In studies of news aggregators, I found that people as a species neither inherently 

avoid challenging information nor inherently seek out diversity, but that there are 

individual differences (Chapter IV). I also explored ways to select diverse content for news 

aggregators and to present that content to challenge-averse individuals. In Chapter II, I 

present the Sidelines algorithm, which selects more representative content from user votes 

(such as those used on news aggregators such as Digg and Reddit), and, in Chapter III, an 

evaluation of this algorithm. I also tested presentation techniques intended to make 

challenging opinions more appealing to people who would prefer not to see them and I 

outline a design space and some additional examples of presentation techniques that 

should be evaluated in future research (Chapters IV-V).  

Inspired by political theorists’ arguments that non-political spaces have historically 

been an important site for exposure to cross-cutting ideas and discourse, I investigated 

non-political blogs to see to what extent they contribute to political discourse online. I 
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found that a substantial amount of political discussion online occurs in non-political 

spaces: on Blogger, about half of the political discussion occurs on non-political blogs, and 

when it occurs, it is not treated as taboo (Chapter VI). These non-political spaces may be 

different than the more frequently studied online political spaces, and better 

understanding the idea formation and discussion that happens in them will be an 

important future research topic.  

I conclude by summarizing what we learned from these studies, reviewing other 

recent advances on the topic of selective exposure and online political discussion, and 

outlining next steps in this research area. 
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Topic Ch Question Findings and outcomes 
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Diversity 
preferences 

 

IV  With what percent of 
agreeable and disagreeable 
items are people most happy? 

 Some people seek diversity, while 
others avoid challenge. 

Selecting 
diverse 
collections 

  

II  What are some measurable 
diversity goals for a selection 
algorithm?  

 Specification of inclusion, alienation, 
and representation measures. 

 Can we design an algorithm 
that produces more diverse 
collections of items than a 
pure-popularity algorithm? 

 Development and assessment of the 
Sidelines algorithm on Digg and blog 
data. 

III  Do people notice the 
difference in diversity 
between collections 
generated by Sidelines and by 
Pure Popularity? 

 Yes, they do. 

Presenting 
diverse 
collections 

  

IV  Does highlighting agreeable 
items increase satisfaction 
with collections that include 
challenging items? 

 Not overall. Highlighting agreeable 
items made peoples’ reactions stronger. 

 Does highlighting agreeable 
items and placing them first 
increase satisfaction with 
collections that include 
challenging items? 

 No. Highlighting agreeable items and 
placing them first made people less 
satisfied overall. 

 

V  What is the design space for 
visualizations intended to 
increase the balance of 
political items that people 
read online? 

 A sketch of a design space, including 
what information can be presented and 
when. 

 How can / should options 
within this design space be 
evaluated? 

 One completed but flawed experiment, 
lessons learned, and a new design. 

Non-political spaces 
 

 

VII  Does political discussion 
occur in non-political spaces 
online? 

 On Blogger, half of the political 
discussion occurs on non-political 
blogs. 

 If so, do people treat it as 
taboo? 

 When politics comes up on non-
political blogs, it elicits as many 
comments as non-political posts. These 
comments engage the political content 
and include some disagreement.  

Table I-1 Summary of questions and findings in this dissertation. 
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CHAPTER II 
 

Sidelines: An Algorithm for Increasing Diversity in Voter-curated 
News Aggregators2 

Online news and opinion aggregators have become an increasingly important source of 

political information. Some sites, such as Digg and Reddit, rely on reader votes to select 

news articles and blog entries to appear on their front pages. They have become popular 

— Digg, for example, gets more than 35 million visitors each month. Memeorandum, a 

similar site, selects political news articles and blog entries based in large part on the links 

among stories: those articles with more incoming links from more popular sources are 

more likely to be selected. Many aggregators also convene conversations around the 

articles selected for the front page. Since these sites serve as an important source of 

political information, site designers might have an interest in ensuring that the items listed 

represent a diversity of viewpoints. But before these sites can highlight diverse stories, 

they need to be capable of measuring the diversity of their collections and selecting stories 

that represent varied viewpoints.  

Even if a site selects items based on votes or links from people with diverse views, 

algorithms based solely on popularity may lead to a tyranny of the majority that effectively 

                                                       
2 Portions of this chapter, and the next, first appeared as Munson, SA; Zhou, DX; Resnick, P. 2009. “Sidelines: 
An Algorithm for Increasing Diversity in News and Opinion Aggregators,” ICWSM 2009. Daniel Zhou 
conducted the Digg.com evaluation. Anton Kast at Digg framed the problem as one of adding diversity 
heuristics to a pure popularity algorithm. 



 

18

suppresses minority viewpoints. That is, even if there is only a slight bias on the input side, 

there can be a large bias on the output side, a tipping toward the majority viewpoint. For 

example, if a site has 60 left-leaning voters and 40 right-leaning voters, and each can vote 

for many articles, then it may be that all the left-leaning articles will get more votes than 

all the right-leaning articles. Similarly, if a link-following algorithm such as PageRank 

(Brin & Page 1998) is used on a corpus of blog posts that has 60% left-leaning authors, the 

left-leaning posts could easily make up 100% of the top ranking articles. If a news 

aggregator takes no corrective steps, the minority may feel disenfranchised and abandon 

use of the site. This could happen even if they would have been happy to stay and 

participate in a site that included their viewpoint only 40% of the time. Over time, even 

people who would prefer to get a mixed selection of news, and to participate in 

discussions with people who have mixed views, would end up sorting themselves into 

homogeneous groups. 

Topic Question Findings and outcomes 

N
ew

s a
gg

re
ga

to
rs

 Selecting 
diverse 
collections 

  

 What are some measurable diversity 
goals for a selection algorithm?  

 Specification of inclusion, 
alienation, and representation 
measures. 

 Can we design an algorithm that 
produces more diverse collections of 
items than a pure-popularity algorithm? 

 Development and assessment of 
the Sidelines algorithm on Digg 
and blog data. 

Table II-1 Summary of questions and contributions in this chapter. 

Diversity goals 

Beyond retaining readers with minority viewpoints, there are several societal reasons why 

some form of diversity might be valuable. One diversity goal is to make as many people as 

possible feel that their viewpoint is represented in the aggregator’s result set. Groups and 

society as a whole make better decisions when they have diverse participants and those 

participants’ viewpoints are all taken into account (Hong & Page 2001). People who feel 

that their view is a minority position and so far unspoken may remain silent to promote 

social harmony (Rossenburg 1955; Mansbridge 1980): by making people see that their 
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viewpoints are publicly represented in the selected news and opinion items, people may be 

more likely to articulate their viewpoints in discussion, at the news aggregator site and 

elsewhere. Moreover, people may be more open to hearing challenging opinions once they 

feel their own viewpoint is represented (Garrett 2009), so making more people feel 

included may induce more people to expose themselves to challenging viewpoints. 

A second diversity goal is to represent viewpoints in the result set in proportion to 

their popularity. This could help everyone to understand the relative popularity of 

different viewpoints. People, particularly those in the minority, tend to believe that their 

own views are more broadly shared than they actually are (Ross et al 1977; Sanders & 

Mullen 1982). Having a better assessment of positions’ true popularity may lead people to 

accept the legitimacy of disagreeable outcomes in the political sphere, rather than 

concocting conspiracy theories to explain how the supposed majority will was thwarted. 

A third diversity goal is to ensure that everyone is exposed to challenging 

viewpoints. A long history of experiments has shown that deliberation on an issue with 

like-minded people leads to polarization: everyone tends to end with more extreme views 

than they started with (Brown 1986, Schkade 2007). Awareness of minority views can also 

lead individuals in the majority to more divergent, out of the box thinking, which can be 

useful in problem solving (Nemeth & Rogers 1996). 

It will be valuable, then, to develop algorithms for news and opinion aggregators 

that select items that in some way reflect the diversity of opinions of their readers. 

Overview of the chapter 

In this chapter, I present an algorithm, which I call Sidelines, that is intended to increase 

the diversity of result sets. I compare the results produced by the algorithm to those from 

a Pure Popularity selection algorithm using three diversity metrics. In the following 

chapter, I report on an online experiment that asked people to assess the result sets 

subjectively. 



 

20

Data sets 

The first domain we explored consisted of user votes on Digg.com. Using Digg's public 

API, we tracked items and votes in the category "World and Business", which includes 

political news and opinion, between 11 October and 30 November 2008. This category 

had an average of 4,600 new incoming stories and 85,000 diggs (votes from users to 

stories) from an average of 24,000 users every day. Voting roughly followed a power law – 

91% of users voted less than once per day, contributing 28% of the total votes, and 0.7% of 

users voted more than 10 times per day, contributing 32% of the total. 

The second domain consisted of links from blog posts from a collection of 500 

political blogs. We selected blogs for this panel from the Wonkosphere directory of 

political blogs (1,316 blogs). To be included, a blog had to publish the full content of its 

posts, including markup, as an RSS or Atom feed, to have posted a blog entry within the 

previous month, and to have most of its front-page posts be about political topics. This left 

us with less than our goal of 500 blogs, so we selected others for inclusion by examining 

the link rolls of blogs already in the sample, until we reached 500. 

We coded each of the source blogs based on its political ideology (liberal, 

independent, or conservative). We consulted both Wonkosphere and PresidentialWatch08, 

which maintain directories of weblogs classified by political affiliation. In addition, one of 

the authors read entries from each blog and coded it manually. When the three 

classifications disagreed, the majority classification prevailed. If a blog was only classified 

by one of Wonkosphere and PresidentialWatch, and there was disagreement between that 

source and the reader, we chose the blogger’s self-identification (if present) or the third-

party (Wonkosphere or PresidentialWatch) assessment. Our panel of blogs contained 257 

liberal blogs (52%), 174 conservative blogs (35%), and 63 independent blogs (13%).3 

                                                       
3 Six additional blogs that we tracked did not post entries during the period October 26 to November 25, 
2008, and are omitted from this classification. A full list of sources and classifications is available at 
http://www.smunson.com/bloggregator/sources-icwsm.csv. 
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For use in our selection algorithms, we think of blogs as voters, links as votes, and 

the web pages that they link to as the candidate items for selection. Note that blog entries 

often link to news stories from mainstream media sites as well as other blog entries and 

non-blog web pages. Thus, the universe of items was not limited to the entries in the set of 

500 blogs. To avoid bootstrapping issues, we collected links to items for two days before 

the time period during which we generated results. During the period 24 October to 25 

November, there were a total of 166,503 links to 106,765 distinct items. 

 
Figure II-1 Visualization of the projection of bipartite graph of blog-item links. Multidimensional 
scaling layout according to Jaccard similarity using GUESS. The link patterns are polarized, much like the 
behavior observed by Adamic and Glance between blogs (inset). Nodes are sized according to degree; edges 
indicate Jaccard similarity above average with edge width according to the Jaccard similarity. Link colors 
match the node colors when the blogs being linked have the same color; maroon connects independent and 
conservative, violet blue connects liberal and independent, and yellow connects liberal and conservative. 

Liberal and conservative blogs tended to link to different items. To visualize this, 

we created a graph with the blogs as nodes and a link between two blogs if the two voted 

for (i.e., linked to) at least six items in common (Figure II-1). Extrapolating from the 

color-coding used by Adamic and Glance (2005, Figure II-1 inset), we colored the nodes 

blue (liberal), red (conservative), and purple (independent).  
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Algorithms 

We implemented two algorithms. The first, a generalization of approval voting, served as a 

comparison point for the second, which was intended to increase diversity. In an approval 

voting system, each voter votes for as many candidates as desired and the top k vote-

getters are selected (Brams & Fishburn 1978). With the blog collections, we treated each 

blog as a voter and a link from a blog post to an item as a vote from the blogger for the 

item. Because reader interest in news decays with age (hence the term news), we modified 

the approval voting system to decay each vote (digg or blog link) linearly over time, such 

that: 

 

where w is the vote’s weight, t is the time since the link was first detected, and tmax is the 

time after which the vote no longer contributes to the total. The popularity of an item was 

computed as the sum of the time-weighted votes, w. The algorithm then selected the top 

k items in terms of total time-weighted votes (Algorithm 1). We call this the Pure 

Popularity algorithm. 

The second algorithm, which we call the Sidelines algorithm, dynamically 

suppresses the influence of voters (Algorithm 2). As with the pure popularity algorithm, it 

incrementally selects the item with the highest total time-weighted votes at each step. 

After selecting an item, however, anyone who had voted for it is relegated to the sidelines 

for a few turns; that is, votes from sidelined voters were removed from consideration for 

the selection of the next few items. Note that the Sidelines algorithm does not take into 

account the group affiliations of voters or correlations between them. Our goal in this 

study was to investigate whether simply reducing the influence of voters whose preferred 

items had already been selected would improve the diversity of the result sets. 

w 
1 t / tmax  

0   
 





for t  tmax

for t   tmax
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Algorithm 1 Pure Popularity 

Param: I {The set of items} 

Param: U {The set of users} 

Param: V {The users by items matrix of votes; Vui = 1 if user u voted for item 
i, else 0} 

Param: k {Number of items to return}  

Param: timeweight() {A function that time‐weights votes based on age} 

 

results ← [] 

 

for all items i in I do: 

  i.score ← 0 

  for all users u in U do: i.score ← i.score + timeweight(V[u,i]) 

 

results ← first k items in I sorted by score 

 

Return: results 

Algorithm 2 Sidelines 

Param: I {The set of items} 

Param: U {The set of users} 

Param: V {The users by items matrix of votes; Vui = 1 if user u voted for item 
i, else 0} 

Param: k {Number of items to return}  

Param: timeweight() {A function that time‐weights votes based on age} 

Param: turns {Number of turns to sideline a “successful” voter} 

 

results ← [] 

 

for all users u in U do: 

  sidelined[u] ← 0 {Initially no one is sidelined for any turns} 

 

while length(results) < k and length(results) < length(I) do: 

  for all items i in I do: 

     i.score  0 

   for all users u in U do: 

     if sidelined[u] ≤ 0 then i.score ← i.score + timeweight(V[u,i]) 

   

  {Decrease the sideline turns for each item} 

  for all users u in U do:  

     sidelined[u] ← sidelined[u] – 1 

 

  winner ← item with maximum score 

  Remove winner from I 

  Append winner to results 

  for all voters v in V do: 

     if V[u, winner] = 1 then sidelined[u] ← turns 

 

Return: results 
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Diversity measures 

I next review three metrics for diversity that reflect different diversity goals: inclusion, 

reducing alienation, and proportional representation.  

Inclusion / Exclusion 

One simple diversity metric measures the proportion of voters who had a voted-for item 

in the result; this is the inclusion score. When computing this metric for any snapshot of 

results, only voters who had voted for at least one item in the previous 48 hours are 

included, since votes decay over 48 hours in our time-weighting. The percent of voters 

who did not have any voted-for items in the result set is the exclusion score. A higher 

inclusion (and hence lower exclusion) score is one indicator of greater diversity. 

Note that we would expect the Sidelines algorithm to include items for at least as 

many voters as pure popularity, since it gives more weight to votes from voters who do not 

yet have an item included. Because it is a greedy algorithm that selects the most popular 

item at each step, pathological cases exist where the Sidelines algorithm actually reduces 

inclusion. 

Alienation 

A more sophisticated version of exclusion measures the position of the best item in the 

algorithm’s result set rather than just whether any voted-for item is present. The measure 

generalizes from the Chamberlin-Courant scoring rule for voting systems that select a set 

of candidates for a committee (1983). The ideal committee is one that minimizes the total 

alienation of the voters, measured as the sum of all the voter’s alienation scores. Finding 

an ideal committee according to this sum of alienation scores has been shown to be NP-

Complete (Procaccia et al 2008). 

In our case, we have a sparse set of approval votes from each voter rather than a 

complete ranking. Moreover, it is natural to think of the result set K={k1, k2, …, k|K|} as 
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ordered, since readers will notice the top news stories in a listing before they notice ones 

lower down. We define the alienation score for user u against K as  

ܵୟ୪୧ୣ୬ୟ୲୧୭୬ሺK, ሻݑ ൌ ൜
minሺ݅ሻ 						where	݇ ∈ K	
|K|  1											otherwise  

That is, Salienation(K,u) is either the position of the highest item in K that u voted for, or 

|K|+1 if K has no item that u voted for. We then define the overall alienation score for K as 

the sum of individual alienations, normalized by the maximum possible alienation so that 

values always lie in the interval (1/(|K|+1), 1].  

ܵୟ୪୧ୣ୬ୟ୲୧୭୬ሺKሻ ൌ 	
∑ ܵୟ୪୧ୣ୬ୟ୲୧୭୬ሺK, 	∈	ሻ௨ݑ

ሺ|K|  1ሻ|U|
 

A lower score indicates improvement on this diversity metric: more people’s viewpoints 

are represented higher up in the result set. As with the simple inclusion/exclusion metric, 

the Sidelines algorithm will normally decrease the alienation score at least modestly, 

though pathological cases exist where it could increase alienation. 

Proportional representation 

A third diversity metric is a generalized notion of proportional representation: we define a 

divergence scoring function that is minimized when the result set K has votes from 

different groups in proportion to their representation in the voter population. In the 

introduction and description of our pilot data, we divided the people and items into Red, 

Blue, and Purple, with Red people generally voting for or linking to Red items. If the user 

population were 60% Blue, we suggested that it would be better to select 60% Blue items 

than to select 100% Blue items, as might occur if we simply take the approval voting 

outcome. 

More generally, suppose that there are groups, G=(g1, …, g|G|), and that each 

person u may have partial affiliation with each group, which we represent by a vector 

ீܝ ൌ ሺݑభ,… ∑ |ృ|ሻ , withݑ ݑ ൌ 1∈ୋ . For a set of users U, we define the representation 

for the groups as  
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Uୋ ൌ 	
∑ ௨∈ࡳܝ

|U|
 

 
Note that, by construction, ∑ U∈ீ ൌ 1, ∑uG=1. That is, the weights express the 

proportion of total affiliation for each group. In the case where individual affiliations are 

pure (i.e, each person is affiliated with just one group), the representation vector simply 

expresses the proportion of users in each of the groups. 

Given a set of votes V, for any item i we define i's representativeness with respect to 

the groups’ preferences as a vector of weights iG, with  

 

That is, each vote is weighted by the portion of the voter’s affiliation that belongs to the 

group. The sum of weighted votes divided by the total votes gives the proportion of the 

total votes that are affiliated with the group. Note that ∑ ݅∈ୋ ൌ 1. In the case where 

individual affiliations are pure, ig simply expresses the proportion of all votes for the item 

that came from users in group g. 

Then, we define the representativeness vector KG on a subset of items K as the 

mean representativeness over items in the subset:  

۹ୋ ൌ
∑ ܑୋ∈

|K|
 

Next we compare the two vectors UG and KG to compute the amount that the 

groups’ preferences for the subset K diverge from the groups’ proportional representation. 

Interpreting UG and KG as probability distributions over the groups, we compute the 

Kullback-Liebler divergence (1951), otherwise known as the conditional entropy: 

ୋ‖۹ୋሻ܃ሺܦ ൌ 	U
∈ୋ

log
U
K

 

The divergence score is always positive. Lower scores indicate more proportional 

representation: the mean item representation score is closer to the mean of the user 

affiliation scores. 

ig 
uguU

 vui

vui

uU
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Digg.com evaluation 

For the Digg data set, we computed result sets of size 35 for the pure popularity and 

Sidelines algorithms once per day from 19-30 November 2008. For the Sidelines 

algorithm, the turns parameter was set to 20, meaning that a voter’s votes were excluded 

for the selection of the next 20 items after a voted-for item was selected. For both the 

Sidelines and Pure Popularity algorithms, each link counted as one vote when it was first 

detected and then decayed linearly to 0 over 48 hours (tmax). 

Averaging over the 12 result snapshots, 65.1% of users who voted for at least one 

item in the previous 48 hours had at least one voted-for item included in the 35 results. 

For the Sidelines algorithm, an average of 66.8% of voters had at least one voted-for item 

selected. The difference is statistically significant (paired t-test, t(11)=6.05, p<0.001). 

Though statistically significant, this effect is quite small in practice: less than two 

additional users in one hundred would have found an item they voted for in the result set.  

The alienation score was also lower (mean 0.476 vs. 0.463). Partly, this results from 

including a voted-for item for more users. In addition, contingent on having an item 

selected, voted-for items appeared somewhat earlier in the result sets: the mean position 

was 6.91 for the Sidelines algorithm and 7.12 for Pure Popularity (t(179,668)= 5.63, 

p<0.001).  

We do not have a classification of Digg users into opinion groups. Therefore, we 

were not able to compute a divergence score to measure the proportional representation 

with respect to opinion groups of selected items vs. the overall population of voters. 

Blog links evaluation 

For the set of 500 blogs, we generated result sets of k=12 items using each of the 

algorithms. In the Sidelines algorithm, a blog sat out the voting for the next turns=7 items 

after an item it linked to was selected. For both the Sidelines and Pure Popularity 
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algorithms, each link counted as one vote when it was first detected and then decayed 

linearly to 0 over 48 hours (tmax). We generated results snapshots at 6-hour intervals for a 

period from 26 October to 25 November 2008. 

The Sidelines algorithm achieved a somewhat higher mean inclusion score (0.445) 

than the Pure Popularity algorithm (0.419). The difference was statistically significant 

(paired t-test, t(120) = 8.701, p < 0.001). We also computed the alienation score, Salienation 

for each snapshot (Figure II-2). For this calculation, we included only the blogs that had 

linked to an item in the time window used to generate the snapshot. The mean Salienation for 

Sidelines result sets was 0.809, and the mean Salienation for Pure Popularity was 0.796. This 

difference is statistically significant (paired t-test, t(120) = 7.864, p < 0.001). 

 
Figure II-2 Alienation score for Sidelines and Pure Popularity algorithms on blog data set. 

As described previously, we expected that the Pure Popularity algorithm might tip 

toward producing very liberally biased results given that the sample of blogs had 

somewhat more liberal than conservative blogs, and we expected that the Sidelines 

algorithm would tip less. To evaluate this, we calculated the proportional representation 

divergence score, D(UG||KG), for each snapshot (Figure II-3). 
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Figure II-3 Proportional Representativeness score for Sidelines and Pure Popularity algorithms on blog 
data set. 

The Pure Popularity algorithm showed some evidence of the expected tipping. 

While 52% of blogs were classified as liberal (blue), the mean representation of blue 

opinion among the items selected by the Pure Popularity algorithm was 61.9% (See KB 

column in Table II-2); the mean divergence score, D(UG|| KG), which takes into account 

representation of blue, red, and purple, was 0.018. The Sidelines algorithm showed 

evidence of tipping as well, but not as severely; the mean representation of blue opinion 

was 58.6% and the mean divergence score was 0.010. The difference in divergences 

between the two algorithms was statistically significant (paired t-test, t(120) = 6.953, p < 

0.001). Table II-2 summarizes the mean distributions of blue, red, and purple 

representation for each algorithm. 

 UB UR UP  

Blog population  0.520 0.352 0.128  

 KB KR KP divKL 

Pure Popularity 0.619 0.277 0.103 0.018 

Sidelines 0.586 0.313 0.101 0.010 
Table II-2 Proportional Representation by algorithm. 
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Discussion 

While the Sidelines algorithm improved the diversity metrics as compared to Pure 

Popularity, effects were not large. Especially with the Digg data, this may be due in part to 

the large number of voters. For example, in the snapshot taken for day November 22, 

there were 4476 votes for the most popular item. 670 of the 1769 voters for the second 

most popular item had also voted for the most popular item, but that still left 1099 votes 

for the second most popular item. We speculate that with so many voters on Digg, even 

when all the voters for the most popular item are removed, there are many like-minded 

voters left to vote for the next most popular item. Thus, among the twelve Digg snapshots, 

the median position in the result set where the Pure Popularity and Sidelines algorithm 

first disagreed was not until the fourth item. More importantly, the median position where 

an item first appeared in the top-35 results with Sidelines that did not appear at all in the 

Pure Popularity result set was position 19, with a range of 16-31. 

There are two obvious weaknesses in the initial Sidelines algorithm that we used in 

the pilot work. First, it is more suited to maximizing the number of people who feel their 

viewpoints are represented in the result set than it is to achieving proportional 

representation of the different viewpoints of the population, two alternative notions of 

diversity. Second, because only voters who actually voted for an item sit on the sidelines, 

and not other people who share their viewpoint, it is not as effective as it could be at 

getting more viewpoints represented in the final set. Future work should explore ideas that 

might improve on the Sidelines algorithm, at least for achieving some types of diversity. 

The first approach is to make adjustments to the Sidelines algorithm, changing 

who is sidelined and for how long. As shown in the pilot study, when we increased the 

number of rounds users were sidelined before their votes counted again, there was a 

greater change in the results list for Digg, as compared to the list generated from Pure 

Popularity voting. Future work could vary this number and find the optimal value, which 
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might depend on other parameters such as the size of the set of items, the size of the 

desired result set, the number of users, and the distribution of votes. There are a number 

of modest adjustments that could be made to the Sidelines algorithm, leading to a 

generalized form (Algorithm 3). This generalized algorithm includes the possibility for a 

gradual recovery from being sidelined, as well as boost phase for voters who have gone an 

excessively long time without having an item selected (Figure II-4). 

 
Figure II-4 Representation of the Generalized Sidelines algorithm. 
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Algorithm 3 Generalized Sidelines 

Param: I {The set of items} 

Param: U {The set of users} 

Param: V {The users by items matrix of votes; Vui = 1 if user u voted for item 
i, else 0} 

Param: k {Number of items to return}  

Param: timeweight() {A function that time‐weights votes based on age} 

Param: PenaltyTurns {Number of turns to sideline a “successful” user} 

Param: Recovery {1 if voters gradually recover from being Sidelined, else 0} 

Param: Penalty {The “cost” to a user’s votes for being Sidelined} 

Param: Boost {1 increase weight of votes from users who have not had an item 
selected recently, else 0} 

Param:  BoostAfterTurns  {number  of  turns  before  a  user’s  vote  weight  starts 
increasing} 

Param: BoostPerTurn {amount to increase a vote’s weight during boost phase} 

 

results ← [] 

 

for all users u in U do: 

  SidelineCounter[u] ← 0 {Initialize to 0 for all users} 

 

while length(results) < k and length(results) < length(I) do: 

  for all items i in I do: 

     i.score  0 

   for all users u in U do: 

     if SidelineCounter[u] < 0: 

       {Not Sidelined} 

       if (Boost) and SidelineCounter[u] ≤ ‐BoostAfterTurns 

         {In the Boost Phase} 

         i.score += timeweight(V[u,i](1+BoostPerTurn(‐SidelineCounter[u]))) 
       else: 

         {In the Neutral Phase} 

         c += timeweight(V[u,i]) 

     else: 

       {Sidelined} 

       i.score += timeweight(V[u,i]‐Penalty+Recovery(Penalty/PenaltyTurns)) 
   

  {Increase the turns since selection} 

  for all users u in U do:  

     SidelineCounter[u] += ‐1 

 

  winner ← item with maximum score 

  Remove winner from I 

  Append winner to results 

  for all voters v in V do: 

     if V[u, winner] = 1 then SidelineCounter[u] ← PenaltyTurns 

 

Return: results 
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To see how Pure Popularity, Sidelines, and other variations can be expressed in this 

generalized algorithm, see Table II-3. 

 Penalty Phase Boost Phase 
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Pure Popularity 0 - - 0 - - 

Sidelines 7 0 1 0 - - 

Sidelines with Recovery 7 1 1 0 - - 

Anti-Sidelines 0 - - 1 7 0.1 

Sidelines with Boost 7 0 1 1 7 0.1 
Table II-3 Examples of Generalized Sidelines algorithm. 

In a further extension, to suppress a whole viewpoint, rather than just the voters 

who voted for an item, we could explore ways to identify those users who share the item's 

viewpoint and sideline all of them for the selection of the next few items. One way to 

identify such users would be by clustering: those in the same cluster as those who voted 

for the just-selected item would be sidelined. Another way would be to use a 

recommender algorithm: those who are predicted to like the just-selected item would be 

sidelined. 

Despite these limitations and promising directions for future work, it is worth 

noting one major advantage of the existing Sidelines algorithm: it depends only on the 

votes for current set of items, and not users’ past voting histories or external classifications 

of the users or items in terms of group affiliations. This characteristic of the Sidelines 

algorithm is particularly valuable in situations in which more extensive history of user 

votes or some classification of the voters’ or items’ viewpoints is not available, such as 

when users first join a system or when there is a new topic on which previous divisions of 

people into opinion groups are no longer valid. Simply putting voters on the Sidelines for 
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a few turns had a noticeable effect in increasing inclusion and the proportional 

representation of the result sets. 

There are other approaches that, like Sidelines, do not require users’ voting history 

or a classification of users. One such approach would be to instead focus on maximizing 

the representation of additional users. This would be similar in principle to Carbonell and 

Goldstein’s concept of maximal marginal relevance, MMR (1998). MMR reorders result 

sets after comparing documents’ cosine similarities, so that each additional document in 

the result set is the one that adds the most relevant information not already in the result 

set, hence the name of the approach. A greedy algorithm could select, for each subsequent 

item, the item that maximizes the marginal inclusion or minimizes the marginal 

alienation. 

Another direction for algorithm development is to compute what would be the 

next selected item, with sidelining, simultaneously for all items, using graph traversal 

techniques inspired by PageRank (Brin & Page 1998). For example, Jeh and Widom 

propose a method, SimRank, to compute the pairwise similarities between all pairs of 

items by traversing a graph consisting of a node for each pair: the similarity score is 

interpretable as the expected distance that random surfers starting at the two items would 

travel before meeting each other if they followed random links in the original graph 

(2002). One idea for our problem would be to construct a bipartite graph with users and 

items as nodes. Links from users to items would be the votes of the users, with time-

weighted scores. Links from items to users would be included, with weights inversely 

proportional to the similarity as computed with SimRank. Then, a fixed point of the graph 

flow could be computed in order to generate a rank score for each of the items; the items 

with the highest scores would be chosen for the output set. 

In another graph traversal approach, Mei et al proposed the DivRank algorithm 

(2010). They note that traditional graph traversal techniques focus on prestige (or 
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centrality), generally without consideration of diversity, despite general agreement that 

breadth of items is often important alongside the prestige or fame of the items in a set. In 

contrast to PageRank’s time-homogenous random walk, DivRank uses a vertex-reinforced 

random walk that creates forward feedback over time (fame begets more fame). Over 

time, connected vertices compete for prestige, and high-prestige vertices absorb the 

prestige of their neighbors, thus, in the ultimate ranking, the top-ranked vertices often 

have lower connectivity – that is, they are farther from each other – than the top-ranked 

items from PageRank. In our problem, DivRank could be used with user-votes as edges 

between different items: an edge is drawn, and weighted, between two items according to 

the number of users who voted for both items. 

It would be valuable to conduct an experiment comparing the impact on our 

diversity metrics of MMR, DivRank, and Sidelines. Such a study, though, is beyond the 

scope of this dissertation. 

Conclusion 

Opinion diversity, although a desirable feature from a societal standpoint and from the 

standpoint of at least some individual readers, may not naturally occur when the most 

popular items are selected. The Sidelines algorithm, which suppresses voter influence after 

a preferred item is selected, is one way to increase diversity. In our experiments, it 

provided modest increases in diversity according to several different metrics. Perhaps 

most strikingly, it reduced the tipping toward the majority group even though it operates 

without any information about the group affinities of people or items. Opportunities 

remain for research on improved algorithms that take into account additional 

information, such as group affinities or past voting histories. 
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CHAPTER III 
 

Sidelines Experiment 

To see if readers would notice the difference between the Sidelines and Pure Popularity 

algorithms described in Chapter II, we conducted a web-based experiment from 27 

October to 1 December 2008 using the blog links as votes. In this study, we presented 

subjects with a list from either the Pure Popularity or the Sidelines algorithm. Because we 

designed the Sidelines algorithm to increase the diversity of items in the result set, and 

because our work in Chapter II showed that Sidelines is more resistant to a “tipping” 

phenomenon, we had several hypotheses related to the diversity goals of the Sidelines 

algorithm that we wanted to test empirically. In particular, we believed that Sidelines-

generated collections would increase subjects’ chances of finding challenging and 

surprising items, and that subjects would have greater variation in their agreement with 

the items in the collection. 

Topic Question Findings and outcomes 
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Selecting diverse 
collections 

  

 Do people notice the difference in diversity 
between collections generated by Sidelines 
and by Pure Popularity? 

 Yes, they do. 

Table III-1 Summary of questions and findings in this chapter. 
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Study design 

We recruited subjects using a local email list and links posted to the researchers’ Facebook 

profiles. Subjects visiting the site were randomly assigned to see the current snapshot of 

results from one of two algorithms (they were not told which, or indeed that there were 

two), asked for reactions to each of the items, and then for reactions to the set as a whole. 

40 subjects completed the survey; one response was discarded, as the subject had 

responded to the questions without actually reading any of the links. 

Each subject first was shown a list of links to 12 items, generated by one of the 

algorithms within the previous 30 minutes. Below each link, we asked subjects to respond 

to three questions about that item (Figure III-1): did they think the facts were true, did 

they agree with the opinions presented by the author of the linked item, and had they seen 

or heard about the story before participating in our survey? 

 
Figure III-1 Portion of the online survey asking users to read links and reply to questions. 

We then asked readers to respond to the collection as a whole. On a 5-point scale, 

did the collection seem liberally or conservatively biased? How complete a range of 

political opinions did they feel it included (5-point scale from very complete to very 
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incomplete)? Did they find opinion-affirming or opinion-challenging items? Did they find 

something surprising? 

Finally, we asked subjects about themselves and their preferences. How did they 

value opinion diversity, topic diversity, opinions that agree with their own, and credibility 

of facts in news aggregator results? What were their political preferences, on a 7-point 

scale from extremely liberal to extremely conservative and on a 7-point scale from strong 

Democrat to strong Republican? 

Hypotheses about the Sidelines results 

As one way of measuring opinion diversity, we calculated the variance in how much each 

subject agreed with the opinions in each article in their result set. A higher variance would 

indicate a more diverse result set, so we expected that subjects who viewed a list of links 

generated by the Sidelines algorithm would have a higher variance in how much they 

agreed with the opinions presented in each article in the collection than subjects who 

viewed results from the Pure Popularity algorithm: 

H1. Subjects viewing Sidelines algorithm results will report higher variance in their 

agreement with the opinions in articles presented than subjects viewing the Pure 

Popularity algorithm. 

As our sample of voting blogs was somewhat liberal, and we anticipated a mostly 

liberal set of respondents (due to our recruitment method, discussed above), we 

hypothesized that the Sidelines algorithm would result in a greater chance of challenging 

and surprising items. 

H2. Subjects viewing a list of links generated by the Sidelines algorithm would be 

more likely to find something challenging than subjects viewing results from the Pure 

Popularity algorithm. 
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H3. Subjects viewing a list of links generated by the Sidelines algorithm would be 

more likely to find something surprising than subjects viewing results from the Pure 

Popularity algorithm. 

Because of the Sidelines algorithm’s resistance to tipping, we believed respondents 

would feel that the Sidelines results represented a more complete and less biased range of 

items than results from the Pure Popularity algorithm. 

H4. Subjects viewing a list of links generated by the Sidelines algorithm would rate 

the collection of links as including a more complete range of political opinions than 

subjects in the Pure Popularity group. 

H5. Subjects viewing a list of links generated by the Sidelines algorithm would rate 

the bias of the collection as more neutral than subjects in the Pure Popularity group.  

Given Stromer-Galley’s findings that people say they seek out diversity (2003), we 

also expected the Sidelines algorithm would lead to result sets that people at least said 

were more satisfying than the Pure Popularity results, after we had primed them to think 

about the diversity of the result sets. 

H6. Subjects viewing a list of links generated by the Sidelines algorithm would report 

being more satisfied with the collection of links than subjects in the control group. 

The substantial counter-evidence, in favor selective exposure preferences in online news 

readership, would also support an alternative hypothesis that people would be less 

satisfied with the Sidelines collections.   

Results 

First, we report on which attributes of news aggregator collections subjects reported 

valuing. Subjects reported that they value diversity of opinions more than agreeable 

opinions (paired Wilcoxon signed-rank test, V=49, p < 0.05), consistent with Stromer-

Galley's findings (2003). Subjects indicated valuing credibility of facts more than either 

topic diversity (paired Wilcoxon signed-rank test, V=265, p < 0.001) or opinion diversity 
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(paired Wilcoxon signed rank test, V=361, p < 0.001), and valuing topic diversity more 

than opinion diversity (paired Wilcoxon signed rank test, V=161, p < 0.05).  

 Both Pure Popularity Sidelines p-value

Value diversity in opinion 
(1 not at all, 5 very much) 

3.64 3.30 4.00 0.065

Value diversity in topic 
(1 not at all, 5 very much) 

4.05 4.05 4.06 0.729

Value opinion agreement 
(1 not at all, 5 very much) 

2.77 2.75 2.79 0.844

Value credibility in facts 
(1 not at all, 5 very much) 

4.64 4.45 4.84 0.237

Liberal to conservative 
(1 extremely liberal, 7 extremely conservative) 

2.30 2.56 2.06 0.485

Party affiliation 
(1 strong liberal, 7 strong conservative) 

2.22 2.55 1.92 0.179

Table III-2 Subject groups for Pure Popularity and Sidelines experiment. Wilcoxon rank sum test.  

Table III-3 summarizes the results from our online experiment. Overall, the only 

significant (either statistically or clinically) difference was in the likelihood of finding a 

challenging item in the collection: viewers of Sidelines collections were 1.78 times as likely 

to find a challenging item as the viewers of Pure Popularity algorithm. I next discuss the 

results as they relate to each hypothesis. 
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 Pure Popularity Sidelines Test used p-value

Variance in opinion agreement 1.08 1.38 t-test 0.233

Variance in credibility 0.65 0.83 t-test 0.210

Credibility 
(1 not credible, 5 credible) 

3.65 3.71 Wilcoxon rank sum 0.844

Overall bias 
(1 conservative, 5 liberal) 

3.40 3.16 Wilcoxon rank sum 0.486

Completeness 
(1 very incomplete, 5 very complete) 

2.50 2.95 Wilcoxon rank sum 0.153

Satisfaction 
(1 very unsatisfied, 5 very satisfied) 

2.60 2.63 Wilcoxon rank sum 0.940

Found something affirming 
(0 no, 1 yes) 

0.94 0.95 Binomial test 1.000

Found something challenging 
(0 no, 1 yes) 

0.50 0.89 Binomial test ***<0.001

Found something surprising 
(0 no, 1 yes) 

0.68 0.68 Binomial test 1.000

Table III-3 Results of online experiment based on political blog links.  

H1 Opinion Diversity. Though the values are in the expected direction – higher 

variance in agreement for the Sidelines – the result is not statistically significant, and the 

effect size would be fairly small as well (Table III-3, row 1). Thus, H1 is not supported. 

H2 Challenge. The subjects, who mostly self-identified as Democrats and liberals, 

were more likely to find something that challenged their opinions in the Sidelines result 

sets; an 89% chance of finding something challenging vs. 50% (Binomial test, p < 0.001; 

Table III-3, row 8). 

H3 Surprise. H3 is not supported; there was no difference in the likelihood of a 

subject finding a surprising item in the Sidelines or Pure Popularity result sets (Table III-3, 

row 9). 

H4 Completeness and H5 Bias. The subjects reported that that the Sidelines 

modification may have delivered slightly more neutral (Table III-3, row 4) and slightly 

more complete (Table III-3, row 5) results sets with regard to range of political opinion. 
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While these indicators are directional, any effects, if present, are rather small and not 

statistically significant. 

H6 Satisfaction. There is no apparent difference in subject satisfaction between the 

two algorithms (Table III-3, row 6). This is an important result, as the subjects viewing 

Sidelines collections were not less satisfied than subjects viewing the Pure Popularity 

collections – despite being much more likely to have their opinions challenged by an item 

in the collection.  

Discussion 

A free-response section of the experiment’s satisfaction question indicated that other 

shortcomings of our aggregator – particularly topic redundancy – drove satisfaction down 

in both conditions. Unlike many popular news aggregators (e.g., Google News, 

Memeorandum), we did not cluster similar articles. On days when one particular news 

story was receiving substantial attention, notably right around the Presidential election, 

when most of our subjects completed the survey, the list of 12 items presented to survey 

respondents might contain many links to different coverage of the story; many subjects 

complained about this in the free response section of the survey. Without the inclusion of 

these news aggregator features, it is difficult to assess how the Sidelines algorithm affects 

satisfaction with result sets. While it is encouraging that the more diverse collections 

produced by Sidelines did not decrease satisfaction, it is possible that any effects of 

diversity on satisfaction were crowded out by other factors affecting satisfaction. Future 

iterations of our aggregation algorithms – both the baseline we use for comparison and 

those designed to promote diversity – should cluster related stories by topic to reduce 

redundancy in the result sets. 

While Sidelines was designed for news aggregator sites that rely on user votes, 

there are likely more, and perhaps better, applications. As seen in this experiment and in 

the evaluation presented in Chapter II, it can also produce more diverse and 
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representative result sets from collections of links, by treating each link as a vote. Other 

voting sites might also benefit from the Sidelines algorithm. Google Moderate, for example, 

allows people to submit questions or ideas and for the site’s other users to vote on these 

ideas and reply to them. When the Obama transition team used an instance of this 

application in 2008, the front page became dominated by questions about the legalization 

of marijuana, since interested users could vote up all questions related to this idea. If 

Google Moderate had used the Sidelines algorithm, would it have surfaced a more 

representative set of issues? Could Sidelines also provide benefits for companies, such as 

Threadless, that decide what products to produce based on user votes and ratings?  

Conclusion 

In this experiment, using real-world link data and news items, the Sidelines algorithm 

produced result sets in which subjects were nearly 1.8 times as likely to report finding an 

opinion-challenging item as in the Pure Popularity collections. Thus, not only does 

Sidelines produce more diverse result sets according to the metrics discussed in Chapter 

II, this increase in diversity is also subjectively noticeable to viewers of the collections. 

Furthermore, the algorithm achieved this increase in diversity without a decrease in 

satisfaction with the presented collections of items. 
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CHAPTER IV 
 

Presenting Diverse Political Opinions: How and How Much4 

If designers of news aggregators turn to the research literature to learn how much opinion 

diversity people seek or tolerate in their political news, they will be confronted with a 

range of competing theories and evidence. According to different theories, readers may 

seek out diversity, they may avoid it, or they may seek reinforcement and tolerate 

challenge only when accompanied by sufficient reinforcing information.5 Each of these 

alternatives has different design implications.  

As discussed in the introduction, there are competing theories and evidence about 

people’s preferences and behavior for viewpoint diversity in online settings. Selective 

exposure theory predicts that people both seek out affirming items and avoid challenging, 

or counter-attitudinal, items (Frey 1986, Mutz & Martin 2001). We will refer to this as the 

challenge-aversion hypothesis. People who are challenge-averse would prefer news and 

opinion aggregators that display only agreeable content. If people are challenge-averse, it 

will be difficult for designers to create single collections that appeal to audiences with 
                                                       
4 This chapter is an expanded version of Munson, SA; Resnick, P. 2010. “Presenting Diverse Political 
Opinions: How and How Much,” Proceedings of CHI 2010. 
5 In this chapter, I focus on preferences for exposure to diversity in online news reading. Esterling et al (n.d.) 
conducted a similar study to explore individuals’ preferences for exposure to diversity in deliberative 
environments. They review and work to distinguish between four typologies: disagreement tolerant (in 
which satisfaction diminishes slightly as disagreement increases), disagreement phobic (in which satisfaction 
decreases sharply as disagreement increases), disagreement philic (in which satisfaction increases 
disagreement seeking), and curious (in which satisfaction increases, up to a point, and then decreases as 
disagreement increases).   
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diverse opinions. Moreover, in personalized presentations, people will prefer 

homogeneous collections of all agreeable items. In either case, it will be hard to meet the 

public policy goal of high exposure to challenging information, unless presentation 

techniques can be developed that make that exposure more palatable. 

Other arguments and studies dispute the challenge aversion theory and offer a 

contradictory hypothesis of diversity-seeking (Stromer-Galley 2003, Horrigan et al 2004, 

Kelly et al 2005). The preferences of diversity-seeking individuals are consistent with 

public policy goals; they would be most satisfied with collections that contain a range of 

views. If people are diversity-seeking, it may be possible to simultaneously satisfy an 

audience with diverse viewpoints. Moreover, diversity-seeking people would also choose 

personalized collections with much less than 100% agreeable content. 

A third hypothesis is that people are support-seeking (Garrett 2009). Like 

challenge-aversion, this hypothesis posits that people seek out affirming items but rejects 

the idea that they avoid challenging items. Support-seeking individuals would prefer news 

aggregators that show them a sufficient amount of agreeable content, and would be 

indifferent as to whether items beyond that amount support or challenge their views. 

Thus, with a large number of items in a collection, it would be possible to please people 

with a variety of viewpoints, and in an individualized collection, people would not mind 

the inclusion of additional challenging items. 

 
Figure IV-1 Competing hypotheses about preferences for agreeable and challenging items. 

In this study, we presented readers with a list of political opinion stories, with 

varying numbers of challenging and agreeable items, and then measured their satisfaction 

with the list, to distinguish among these different theories about people’s preferences for 
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agreeable and challenging information. We would expect to see different relationships 

between the percentage of the list that is agreeable or disagreeable and reader satisfaction, 

as summarized in Figure IV-1. If people are challenge-averse, then we would expect that a 

higher percentage of agreeable items and lower percentage of disagreeable items would be 

preferred. On the other hand, if people prefer diversity, then we would expect them to be 

most satisfied when the list contains both agreeable and disagreeable views. Finally, if 

people prefer agreeable items but are not particularly averse to challenging items, then the 

count of agreeable items, not the percent of items that are agreeable, should drive 

satisfaction. Thus, satisfaction should increase toward the asymptote as the percentage of 

agreeable items increases, and should approach the asymptote at a lower percentage for 

longer lists.  

If there are people who are challenge-averse or support-seeking, this opens a new 

question: can we use presentation techniques to make people who prefer support equally 

satisfied with a lower percent or count of agreeable items? To assess this, we tried 

highlighting agreeable items, as well as placing them first in the collection. 

Topic Question Findings and outcomes 
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Diversity 
preferences 

 

 With what percent of agreeable and 
disagreeable items are people most 
happy? 

 Some people seek diversity, 
while others avoid challenge. 

Presenting 
diverse 
collections 

  

 Does highlighting agreeable items 
increase satisfaction with collections that 
include challenging items? 

 Not overall. Highlighting 
agreeable items made peoples’ 
reactions stronger. 

 Does highlighting agreeable items and 
placing them first increase satisfaction 
with collections that include challenging 
items? 

 No. Highlighting agreeable 
items and placing them first 
made people less satisfied 
overall. 

Table IV-1 Summary of questions and findings in this chapter. 
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Exposure to diversity 

Prior research on exposing individuals to diversity in the news has discussed both the 

selection and presentation components of the problem. Park et al developed and evaluated 

the NewsCube system (2009). NewsCube classifies content into different viewpoints or 

“aspects” on issues. Subjects who participated in a NewsCube trial read more articles about 

a controversial issue than subjects who used Google News to learn about the same topic. 

The articles read by NewsCube subjects appeared to cover a greater breadth of opinions 

(per reader). Subjects who said they would not normally compare different articles on a 

topic said that the aspect-presentation made them want to read more articles. This 

suggests that certain presentations of information can increase the diversity of opinions 

that participants are motivated to access, even if some of those opinions are disagreeable.  

Other work also examines both the presentation and selection questions. Oh et al 

built a blog search engine that classified results according to political viewpoints (liberal 

or conservative) and then used that information in the presentation of search results 

(2009). Results were either labeled or sorted into two labeled columns according to this 

bias. Subjects had mixed reactions to these presentations, but generally preferred seeing a 

column of liberal items and a column of conservative items. Those dissenting preferred to 

decide for themselves what was liberal or conservative, or felt that the labels added too 

much polarization to the results – even though they did not change which results were 

shown. The researchers also found that in the two-column layout, liberal sources 

accounted for a greater portion of the liberal searchers’ clicks (there were too few 

conservative subjects to observe trends among these subjects).  

In Chapter II, I proposed an algorithm – based on user votes – for selecting 

diverse items and discussed three metrics for evaluating selection algorithms: inclusion, 

alienation, and proportional representation. While these metrics provide insight into 

algorithms’ performance at including items for which many users voted, and how well the 
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proportions of items align with proportions of users, they are incomplete as measures of 

the diversity goals discussed above. That is, while they tell us about whether the collection 

includes items that represent voters, these metrics do not tell us whether the voters feel 

represented. Many of the desirable and undesirable outcomes depend not on whether 

diverse results are present but instead on viewers’ reactions to that diversity. For example, 

even if ideas are represented in a collection in the same proportion with which they are 

held, people holding minority opinions may not notice the small number of items 

representing their views among the many more that challenge their opinions. This may 

cause them to seek out sources where they can more easily find items that affirm their 

views, leading to polarization. It is important, then, to understand reactions to different 

levels of supporting and challenging items, and to identify design choices that may affect 

viewers’ reactions to these collections. 

Methods 

All experiments followed the same general design: we provided each subject each day with 

a list of 8 or 16 links to opinion articles, with known biases, about United States politics. 

The articles were found on blogs or in the mainstream media. Each item was displayed as 

an article title together with its first or last paragraph, as shown in Figure IV-2. The 

selection and presentation of items varied among subjects. 
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Figure IV-2 Example articles and question form. 

Subject recruitment 

We recruited subjects from Amazon.com’s Mechanical Turk service, a system that allows 

remote workers to complete small tasks for small payments. Mechanical Turk has been 

used by other researchers for annotating data, and Kittur et al have published guidance for 

using Mechanical Turk in research (2009). These guidelines were useful in planning our 

study.  

We used a Qualification test, for which subjects were not paid, to initially screen 

the Mechanical Turk workers. We asked subjects about their location, age, political 

knowledge, and political preferences. We only accepted Mechanical Turk workers who 

self-reported (to Amazon for payment purposes) a United States location and whose 
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previous task approval rate exceeded 90%. Additionally, we screened each Mechanical 

Turk worker for some basic US political knowledge using multiple-choice questions: 

1. Who is the current Vice President? 

2. Which party is George W. Bush a member of? 

3. For what position is Sonia Sotomayor currently a nominee? (And later, to what 

position has Sonia Sotomayor been appointed?) 

Potential subjects had to correctly answer two of the three questions to participate, though 

on average, accepted subjects answered 2.98 questions correctly. 

We also asked potential subjects about their party affiliation (7-point scale from 

strong Democrat to strong Republican) and about their political preferences (7 point scale 

from strong liberal to strong conservative). We selected for subjects whose party affiliation 

matched their liberal or conservative preferences (for example, we screened out subjects 

who reported being both a strong Republican and a liberal). Furthermore, because we 

wanted subjects for whom we could predict an article would be agreeable or challenging 

with some confidence, we also filtered out subjects who were more neutral or 

independent. To be included, subjects had to have a mean position (as the average of their 

responses to the two seven-point scale questions) of ≤3 or ≥5.  

Although subjects were not a random sample of the U.S. population, the subjects 

were diverse in geography, age, and gender. Subjects lived in 37 of the 50 U.S. states 

(Figure 3). Their mean age was 34.3 years (median: 31 years, standard deviation: 11.8 

years). 83 were men, 87 women. 
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Figure IV-3 Locations of Mechanical Turk workers who participated in the study. 

Item selection 

We selected items based on links from a panel of 500 political blogs – the same set as 

presented in Chapter II. Each day, we selected the 40 most popular liberal and 

conservative items, based on number of links to the items from liberal and conservative 

blogs in the previous 36 hours. Items were defined as conservative if the ratio of the 

probability of any conservative blog in our panel linking to the item compared with the 

probability of any liberal blog in our panel linking to the item was at least 2:1, and vice-

versa for liberal items. The selection system also filtered out tweets, Twitter accounts, 

Wikipedia articles, and YouTube videos. Before including the selected articles in our pool 

of items, each morning researchers manually inspected each candidate item and removed 

items that did not match the predicted bias (e.g. a liberal item coded as “conservative” 

because conservative bloggers linked to it to highlight a disagreement with liberals). We 

also removed items that did not contain or report on opinion, as well as posts that 

contained only video, images, or audio. On average, this left 23 articles of each bias, per 

day.  

30 turkers were assigned to a manipulation check survey. In this survey, each 

turker was presented with a list of three links and asked to what extent they agreed with 

each link on a 5-point scale. This was run early each day, after the researchers reviewed the 

list of items. Based on raters’ responses, we then removed items that were not found to 
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match their predicted bias. An item that was predicted to be liberally biased would be 

removed if liberal raters did not agree with it, or if conservative raters did agree with it. 

Raters agreed with our predicted ratings (as supporting or challenging the raters’ 

opinions) 74% of the time. These disagreements were not distributed evenly across items, 

and 16% of the items were removed because of disagreement. 

We did not require all items to get 100% agreement for inclusion, as we do not 

expect parties to be 100% united in opinion. Initially, an item was queued for 3 ratings 

(including at least 1 from a participant from each party). If no raters diverged from the 

prediction, an item was included. If two or more raters diverged from the prediction, we 

discarded the item. If one rater diverged from the prediction, the item was queued for an 

additional rating from someone with the same party affiliation. If the fourth rater 

disagreed with the prediction, the item was discarded; if this rater agreed, the item was 

included. In cases when this rating was not obtained (insufficient participation in our 

Mechanical Turk task), the item was discarded. On five days, this removal resulted in too 

few liberal or conservative items, in which case the system filled in with items from the 

previous day as needed. 

Experimental design 

The subjects not assigned to the manipulation check condition viewed a list of items and 

were asked one of two questions about the representativeness of the collection as a whole. 

Subjects were randomly assigned to one of six experimental conditions in a 2x3 factorial 

design: 

1. Total number of items: 8 or 16 

2. Presentation: a list with agreeable and disagreeable items interwoven, a list with 

agreeable and disagreeable items interwoven and the agreeable items 

highlighted, or a list with the agreeable items first and highlighted followed by 

the disagreeable items.  
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Repeated measures were collected: each subject could complete one survey per 

day, based on the items selected that day. Subjects remained in the same experimental 

condition throughout the study, but the number of agreeable items was randomly chosen 

for each subject each day.  

The instructions read: 

The following list contains some of the most-linked to political opinion stories from 
the last few days. Please look at the list as you might if you were to visit a website like 
Digg or Reddit (you may click on and read as many or few as you like). Then answer 
the questions at the bottom of the page. Thank you! 

Additionally, subjects in the agreeable first or highlight conditions were told that items 

they were predicted to agree with would appear highlighted in the list.  

Subjects were also assigned to one of two questions. The first question (44 

subjects) was our primary outcome measure and asked about the subject’s satisfaction 

with the range of views: 

“Suppose this was the front page of a political opinion aggregator. How would you 
feel about the viewpoints represented in it?” (5 point Likert-like scale, Very 
dissatisfied to very satisfied)  

The second question (39 subjects) asked about the bias of the collection:  

“What, if any, is the political bias of this collection?” (5 point Likert-like scale, Very 
Liberal to Very Conservative) 

We used this question to help us understand our findings. If a particular presentation 

feature affected satisfaction, is it because it changed how the subjects perceived the 

collection’s bias, or is it because the subjects simply did not like the feature? 

In addition to these questions, each time a subject viewed a list, they were 

randomly asked either to provide a free-text explanation for why they gave the rating they 

did or to repeat a question from the pre-test (party affiliation, liberal to conservative, age, 

or gender). The free response question helped us to understand why subjects gave the 

ratings they did and if they were interpreting the questions as intended. Repeating 
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questions from the qualification test follows a recommendation from Kittur et al to ask 

verifiable questions (2009). Five subjects (four from the satisfaction question, one from 

the bias question) changed their answer substantially (e.g. aging more than one year or in 

reverse, changing gender, or shifting on either of the political spectrum questions by two 

points or more). Though there are many possible explanations for these shifts – such as 

shared accounts within a household, careless clicking, easily shifting political opinions, 

deliberate deception, or lack of effort – all of these explanations are not desirable for study 

subjects, and so these subjects and their responses were excluded from our analysis, 

leaving us with 108 subjects (40 responding to the satisfaction question, 38 responding to 

the bias question, and 30 rating articles for the manipulation check).  

After a five-day warm-up period with variable pay (to identify an appropriate 

price), subjects were paid $0.75 for rating a collection of items. This pay may seem high 

compared to some expectations for Mechanical Turk labor. We believe that we had to pay 

a higher price because our task both required successful completion of a qualification and 

was only available once per day. Interestingly, many more people (171) completed the 

qualification test and were approved than actually returned to complete a task.  

We collected data daily from 22 July – 14 August, and then on alternating days 

from 26 August to 10 September, 2009. During this time period, the major topics in 

articles displayed included national debates about healthcare reform and the Waxman-

Markey cap and trade bill, the death of Massachusetts Senator Edward Kennedy, 

discussion about the success of the Troubled Asset Relief Program and the American 

Recovery and Reinvestment Act (including the “Cash for Clunkers” program), the release 

of two American journalists from North Korea, continued discussion about political 

unrest in Honduras, the abrupt resignation of Alaska Governor and former Vice 

Presidential candidate Sarah Palin’, and speculation about 2010 Congressional and 

gubernatorial elections. Previous selective exposure studies have been criticized for being 

short term laboratory studies that might be particularly subject to social desirability bias 
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and other confounds (Taber & Lodge 2006, Knobloch-Westerwick & Meng 2009), and so 

we allowed subjects to return up to once per day, on all days during which we collected 

data, with the hope that a more longitudinal design, featuring a range of current political 

issues on different days, would more accurately reveal subjects’ preferences than a one-off 

laboratory study.  

A previous study found that Mechanical Turkers’ efforts were not tied to the 

amount of payment (Mason & Watts 2009). On average, our subjects rated a list in 6.3 

minutes (5.8 minutes for 8-item lists; 7.3 minutes for 16-item lists). No subjects completed 

the task in less than a minute. For comparison, Alexa (accessed 16 September 2009) 

reports that Digg visitors spend an average of 4.2 minutes per day on the site, Reddit 

visitors spend an average of 6.3 minutes, and Memeorandum visitors spend an average of 

2.0 minutes. 

Results 

I next discuss the results of our study with respect to individuals’ diversity preferences and 

to our efforts to nudge challenge-averse individuals to tolerate more opinion diversity 

using simple presentation techniques. 

Diversity preferences  

In our first look at the data, we found that when the list contained a low percentage of 

agreeable items, almost all subjects were very dissatisfied. When a high percentage of 

items were agreeable, however, there was greater variance in responses: some subjects 

were very satisfied, some subjects were very dissatisfied. This suggested that there may be 

individual differences, with some people diversity-seeking and some challenge-averse. 

To confirm this, we analyzed the open-ended responses for the question about 

why subjects in the satisfaction question group gave the ratings they did. Some subjects 

wrote that they specifically did not want a list of solely supportive items and that they 
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want opinion aggregators to represent a fuller spectrum of items, even if that includes 

challenging views. Two researchers coded all free-text responses for similar remarks and 

then coded participants as diversity-seeking if they had made at least one such comment. 

Our standards were strict: subjects had to write that they either  

1. wanted a fuller spectrum of views even though their views were represented in 

the majority of items in the list, e.g., 

 “It all seems liberal. I’m liberal, but I think it's good to get dissenting opinions 
instead of having all the articles slanted the same way. I'd really like seeing pro 
and con articles on some of the topics.” 

“The articles in this list showed some of both sides on some issues, but on other 
issues like health care was rather one sided. If that and a few other articles had 
been given two sides I would be completely satisfied. I like to read both sides even 
though I am mostly conservative.” 

or 

2. were pleased with the balance of items and would not want more supporting 

items, e.g., 

“There is an even distribution of right and left wing articles. I think it is best to 
cover both sides of the issue.” 

“I like that there are views from both Democrats and Republicans and seems to 
be a great mix of both sides of the fence.” 

To avoid potential biasing of the coders, coders were not informed of the actual 

number of agreeable items presented to a subject or of the subject’s satisfaction score for 

the items when coding the subject’s explanatory comments. We did not use the actual 

properties of the list associated with a comment when we coded, out of concern that we 

would code people as diversity seeking when the subject’s remarks were ambiguous in 

order to explain behavior. Our inter-rater reliability, calculated as Cohen’s kappa (1960), 

was 0.89. All raters coded all subjects. Landis and Koch (1977) characterize agreement 
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above 0.8 as “almost perfect agreement.” We decided the disagreements through 

discussion.  

Ten out of the 40 subjects in the satisfaction condition were coded as diversity-

seeking (25%). This is likely an undercount given our strict coding criteria and that some 

participants never saw a collection that would prompt different reactions from diversity 

seeking participants. Once we separated out the diversity-seeking individuals, our results 

were much clearer (Figure IV-4). The linear regression predicting satisfaction based on 

percent agreeable items, whether a subject is diversity seeking, and the interaction terms 

between these (to the quadratic polynomial) shows significant interaction effects between 

percent agreement and diversity seeking for predicting satisfaction (Table IV-2). Because 

subjects were able to rate multiple collections (one per day), in all regression results we 

cluster responses by subject, which reduces degrees of freedom and inflates standard error 

estimates, to correct for correlation of repeated measures.6  

 
Figure IV-4 Comparison of satisfaction at different percentages of agreeable items for diversity-seeking 
and other (either challenge-averse or support seeking) individuals. Fit lines according to regression 
model in Table IV-2. The grey band includes ± one standard error of the prediction. 

                                                       
6 All regressions were performed using STATA 10’s regress command with the robust cluster by subject 
option. 
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 ß Std Err p-value 

Intercept  1.30 0.23 <0.001 

% Agreement 2.28 0.76 <0.010 

(% Agreement)2 0.80 0.66 ns 

Diversity seeking -0.25 0.63 ns 

% Agreement * Diversity seeking 6.49 3.16 <0.050 

(% Agreement)2 * Diversity seeking -8.32 3.11 <0.050 

Table IV-2 Linear regression results for satisfaction (1-5). n=145 from 40 subjects, F(5,39) = 29.63 (p 
<0.001); adjusted R2 0.4776. 

SUPPORT-SEEKING OR CHALLENGE-AVERSE? 

We then examined whether the remaining 30 individuals were support-seeking or 

challenge-averse. Challenge-averse subjects would be equally satisfied at the same 

percentage of agreeable items, regardless of the length of the list. Support-seeking subjects, 

in contrast, would be equally satisfied at the same number of agreeable items, regardless of 

the length of the list. If we were to find evidence that people are support-seeking, it would 

offer one simple strategy for addressing the public policy challenge of exposing people to 

more perspectives. Simply presenting a longer list of results could lead to sufficient 

counter-attitudinal information exposure, so long as people did not become fatigued with 

a longer list. 

In our analysis, we did not find evidence of support-seeking individuals. Table 2 

presents the linear regression model for:  

satisfaction = 1 + 2(% agreeable items) + 3(listlength16)+ 4(listlength16 * % agreeable items) 

In this model, listlength16 is a dummy variable equal to 1 for 16-item lists (longer lists) and 

0 for 8-item lists (shorter lists).  
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 ß Std Err p-value 

Intercept  1.61 0.33 <0.001 

% Agreement 2.69 0.40 <0.001 

List length = 16 -0.58 0.40 ns 

% Agreement * (List length = 16) 0.53 0.53 ns 
Table IV-3 Linear regression results for satisfaction (1-5) with data from diversity-seeking subjects 
withheld. n = 112 from 30 subjects, F(3,29) = 50.43 (p <0.001); adjusted R2 0.5079. 

We exclude data from the 10 diversity-seeking individuals. If there are any effects 

of list length, they are in the opposite direction of what would be expected for support-

seeking behavior. In a plot of the percent agreeable items and satisfaction (Figure IV-5, 

top), the slope of the fit lines for the two list lengths follow each other quite closely, 

suggesting that count does not matter. When we plot the number of agreeable items 

(Figure IV-5, bottom), we can see a clear divergence. Furthermore, two agreeable items 

out of a total of eight is superior to two agreeable items out of a total of sixteen (t(7.373) = 

3.3471, p<0.05). It is possible that subjects became fatigued with longer lists, particularly 

longer lists of challenging items, confounding our results, though the list was not longer 

than that found on many news aggregator sites – the Digg front page shows 18 items and 

the Reddit front page shows 25 items – so we do not believe that length drove satisfaction 

down. The presence of challenging items, not just the count of agreeable items, shapes 

satisfaction. We conclude that the remaining subjects as a group are challenge-averse, 

though it remains possible that a few individuals are support-seeking. 
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Figure IV-5 Top: Percent agreement and satisfaction for 8 and 16 item lists. Fit lines from model in Table 
2. Bottom: Number of agreeable items and satisfaction for 8 and 16 item lists. Fit lines: satisfaction = 1 + 
2(# agreeable items) + 3(list length)+ 4(list length * # agreeable items). Responses from individuals coded 
as diversity-seeking excluded from both plots.  

We also looked to see if subjects’ demographic characteristics were correlated with 

whether they were diversity-seeking or challenge averse. With this small number of 

subjects, we saw no statistically significant differences in age, gender, partisan or political 

preference, or partisan or political extremity between the two groups. We do, note, 

however, that the challenge-averse subjects were 57% female while the diversity seeking 

subjects were 80% female; future studies should explore whether this proportion 

difference actually exists in the larger population or occurred by chance in our study. 

Presentation techniques for challenge-averse readers 

Having found that at least some people exhibit challenge-averse behavior, we investigated 

whether presentation techniques could increase their satisfaction with collections that 

contained some challenging items. Table IV-4 presents a linear regression model for the 
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effects of presentation style and their interaction effects with percent agreement. We will 

discuss the effects of each presentation style separately.  

 ß Std Err p-value 

Intercept 1.59 0.29 <0.001 

% Agreement 2.60 0.36 <0.001 

Highlighting only -0.60 0.41 ns 

% Agreement * Highlighting only 1.29 0.60 <0.05 

Agreeable first -0.97 0.31 <0.010 

% Agreement * Agreeable first 0.64 0.44 ns 
Table IV-4 Regression model for a reader’s satisfaction (1-5) as predicted by percent agreement and 
presentation style. (baseline presentation interweaves agreeable items and does not include highlighting). n 
= 121 from 30 subjects, F(5,29) = 67.42, p < 0.001, adjusted R2 = 0.564. 

HIGHLIGHTING ONLY 

We had expected that, for challenge-averse individuals, highlighting agreeable items 

would increase their satisfaction at all percentages of agreeable items, by helping them 

identify these items even when they were rare in the collection. Figure IV-6 presents 

results from a reduced model excluding participants in the agreeable first condition. 

 
Figure IV-6 Reduced model for highlight -only: satisfaction = β1 + β2(% agreeable items) + β3(highlight) + 
β4(highlight*% agreeable items) 

Contrary to our expectations, there is no main effect of highlighting. Instead, there 

is a significant interaction terms between highlighting and percentage of agreeable items. 

Highlighting agreeable items makes a reader’s reaction – whether it is satisfaction with a 
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high percentage of agreeable items or dissatisfaction with a low percentage – more 

extreme.  

At the lower range of agreeable items, where we had expected highlighting to have 

the greatest improvement in satisfaction, subjects’ satisfaction is actually decreased. In the 

mid-range, particularly important for public policy goals of showing viewpoints in 

proportion to how they are held, highlighting has essentially no effect. With high 

percentages of agreeable items, it may be possible to highlight agreeable items and include 

a few challenging items while achieving the same satisfaction as a list of only agreeable 

items.  

Among subjects to whom we posed the question about the collection’s bias, we saw 

a similar interaction effect between highlighting and the percent of agreeable items, 

suggesting that the effects of highlighting on a subject’s satisfaction with the collection is 

moderated by how highlighting affects their perception of bias in the collection. In other 

words, it seems that highlighting helps subjects judge the percentage of agreeable items, 

and the perceived percentage drives satisfaction. Consistent with that interpretation, we 

note that challenge-averse readers in the highlight condition spent an average of 5.1 

minutes per collection, compared to 7.5 minutes for challenge-averse readers who read 

lists without highlighting. Finally, it is also possible that highlighting the agreeable items 

had a priming effect that affected subjects’ responses to the satisfaction question, without 

actually affecting their actual satisfaction with the collection.  

HIGHLIGHTING+ORDERING: AGREEABLE ITEMS FIRST 

We also anticipated that placing agreeable items first would increase challenge-averse 

readers’ satisfaction. Instead, readers who viewed agreeable items as highlighted and at the 

beginning of the collection reported lower satisfaction (Table IV-4). Figure IV-7 displays a 

model comparing highlight+ordering and the baseline presentation. 
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Figure IV-7 Model comparing baseline and highlight+ordering: satisfaction = β1 + β2(% agreeable items) 
+ β3(agreeable first) + β4(% agreeable items * agreeable first) 

The subjects who we asked to rate the collection’s bias, however, reported that the 

collection was more biased in their favor when the agreeable items were highlighted and 

shown first than when the agreeable items were not highlighted and were interwoven with 

disagreeable items. This appears to be contradictory, or at least suggests that something 

other than perceived bias is driving satisfaction in this case. Challenge-averse readers in 

the highlight+ordering condition spent an average of 5.3 minutes per collection, 

compared to 7.5 minutes for challenge-averse readers who read lists without ordering and 

highlighting. 

Discussion 

Our study finds good and bad news for those with a policy goal of encouraging exposure 

to a diversity of opinion. The good news is that some people actually prefer collections of 

items with diverse opinions. They appear not to be the majority, and so it may be 

important to consciously design specifically for this audience, as they may not naturally be 

served if designers build applications primarily for the majority, challenge-averse 

individuals. We do not expect, however, that the proportions of challenge-aversion and 

diversity seeking individuals we observed generalize to a broader population: among 

other limitations, our small sample was limited to people with fairly strong political 
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preferences. A more representative study is needed to better estimate the prevalence of 

challenge-averse and diversity seeking individuals. 

The bad news is that for challenge-averse individuals, designers cannot substitute 

ordering or highlighting of agreeable items for including more agreeable content. With 

highlighting, it might be possible to include one or two challenging items in a list of 

otherwise agreeable items and achieve the same satisfaction from challenge-averse people 

as with an unhighlighted list that happens to contain completely agreeable items. From the 

perspective of website operators trying to attract and retain users, this is unlikely to be a 

desirable tradeoff. It is unlikely to be sufficient challenge to satisfy diversity-seeking 

individuals, and would leave the news aggregators vulnerable to losing challenge-averse 

individuals to competitors who offer 100% agreeable items all the time (and hence need 

no highlighting). 

We also cannot rule out that the observed effect of placing agreeable items first is a 

result of flawed experimental design. By asking about subjects’ satisfaction at the end, and 

placing the agreeable items at the beginning, we may have prompted a recency effect 

(Broadbent & Broadbent 1981) – that is, their answers were more influenced by the 

disagreeable items nearer to the question. In an actual political opinion aggregator, truly 

challenge-averse readers may never scroll that far, while the Mechanical Turk readers may 

have felt an obligation to read every item because they were being paid rather than 

reading for their own enjoyment, or they may have skipped looking at the first few items, 

immediately scrolling down to the questions and looking only at the items closest to the 

questions.  

The responses from the subjects who we asked about the collection’s bias, however, 

appear to contradict the explanation that items nearer the bottom of the list, and thus the 

question, weighed more heavily in the subjects’ consideration of bias and led to the 

observed decrease in satisfaction with presenting agreeable items first. It is possible that 

the subjects simply liked the agreeable first presentation less, or, that by revealing we were 
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willing to change the order of items, we raised expectations and they were frustrated that 

we did not create a list of entirely agreeable items. Alternatively, subjects may have 

perceived a fairness norm, which we appeared to violate by changing the order of items in 

the list, thus decreasing their satisfaction. It is also possible that subjects read the 

collection differently when we asked them to characterize its bias than when we asked 

them about their satisfaction with the opinions presented, and that this caused them to 

experience the collection’s bias differently between the two subject groups.  

Alternative experimental designs – such as placing the question at the top of the 

list or having it scroll alongside – may lead to an improved understanding of the effect of 

ordering. It is also possible that subjects in a lab experiment or Mechanical Turk task will 

always feel obligated to read an entire list even when they would not do so on an actual 

website. As with any laboratory experiment, the ecological validity of our study was 

limited, though its design as an online, longitudinal study hopefully resulted in higher 

external validity than short-term in-lab studies. Emails from subjects, saying that they had 

come to value the study’s collection of articles as a daily news source, and hoping that it 

would remain available after the study, support this hope. Nevertheless, field trials 

examining actual behaviors, such as visits to a site, articles read, and engagement such as 

comments, are likely to yield measures of preferences and behavior that have higher 

external validity than a self-reported measure of satisfaction. 

We only evaluated a small range of the presentation techniques for lists of items. 

Alternative ideas that could be evaluated include reducing the space that challenging 

items occupy in a list by reducing the font size or collapsing challenging items’ abstracts. 

Perhaps such techniques would make palatable a smaller percentage of agreeable items. 

They would increase the risk, however, that people would not actually be exposed to the 

challenging items, thus thwarting the public policy goal of increasing exposure to 

diversity.  
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More sophisticated presentation techniques, such as aspect browsing in NewsCube, 

may have more potential for showing diverse items to challenge-averse individuals. 

Agreeable items might be shown on the front page, with challenging items on the same 

topic linked from the agreeable item page. A similar idea might be based on the 

presentation used by the political news aggregator Memorandum. Memeorandum groups 

items by topics. The front page includes abstracts for top items with links to other items 

on the same topic below the abstract. To appeal to diversity-seeking individuals, the 

display might be personalized to show a top-level item and abstract for any topic from a 

supportive source, with more challenging items appearing in the links. A more complete 

discussion of the design space appears in the next chapter. 

Another limitation of this study is that we have reduced the political spectrum to 

two broad points of view, and that our subjects only include people whose views fit at the 

ends of this axis. We do not know if our results generalize to people who are less partisan 

or more independent. People who are less partisan and people who are not as politically 

aware (such as any potential subjects excluded or deterred by our requirement for some 

political knowledge) process political information differently (Zaller 1992), and so our 

results may not generalize to such individuals. This limitation is another reason that our 

estimate of the percentage of diversity-seeking individuals must be taken with skepticism. 

INDIVIDUAL PREFERENCES 

Our finding of individual differences in diversity preferences is one of the more important 

results of this study. It suggests directions for future research, cautions about the design 

and interpretation of studies of selective exposure, and may help explain some past 

contradictory selective exposure results.  

Our study is a caution against research designs intended to study the average 

human’s selective exposure preferences. We started out with this intent – to resolve 

whether people, as a whole, were challenge averse, support-seeking, or diversity-seeking 
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in their preferences for political news aggregators. An analysis that did not account for 

individual differences would have produced a fairly strong challenge averse result for 

challenge aversion; the simple OLS regression model 

Satisfaction = 1(% agreeable items) + 2(% agreeable items)2 

shows a significant effect for percent agreement (p < 0.01) but not for (percent 

agreement)2 and an adjusted R2 of 0.40. Though a Breusch-Pagan test would have 

indicated heteroskedasticity, we might have concluded that people are, overall, challenge 

averse.  

The finding of individual differences may be a partial explanation for the 

contradictory results of many selective exposure studies. It is part of a growing body of 

evidence that suggests that diversity preferences vary by individual and by context (e.g., 

Esterling et al, n.d.; Hinz et al 1997; MacKuen et al 2010). In some contexts, such as the 

deliberations studied by Esterling et al (n.d.), more people may be diversity-seeking, while 

in other contexts, such as media choices, more people may be challenge averse. If studies 

are designed to measure the average human and do not include ways to tease out 

individual and contextual differences, they will miss the actual distribution of preferences, 

and instead come to a conclusion that people are, overall, diversity-seeking, challenge-

averse, or neither. Future work should continue this exploration of preferences as 

predicted by individual and contextual attributes, such as by individual-level analysis or 

studying the preferences of individuals across different tools. Though we find that at least 

some people are diversity-seeking and at least some people are challenge-averse in their 

preferences for political news and opinion, we do not know the distribution of preferences 

in the population as a whole, or if an individual’s preferences are common across topic 

areas, or if someone who prefers to avoid challenging political opinions may seek out 

challenging opinions about which baseball team will win the pennant this year. Given data 

about which articles people click on, it might be worthwhile to formulate alternative 

stopping rules, analogous to those hypothesized in the arena of information acquisition 
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for decision-making or design, and to estimate their prevalence or the conditions under 

which people make use of different stopping rules (Browne & Pitts 2004). 

Future research also should go beyond short-term measurements and emphasize 

longitudinal studies. Preferences may vary quite a bit with long-term use of a news 

aggregator. For example, diversity seekers might prefer diversity one day but tire of it in 

the long run. Similarly, people who currently are getting diversity might be happy with all 

agreeable items in the short term, but may not want only supportive items in their day-to-

day news source. Other factors, such as whether one’s political party is in power, may also 

affect an individual’s diversity preferences over time.  

Conclusion 

In this study, we find a possible reconciliation of the conflicting theories of diversity-

seeking and challenge avoidance: they correctly describe the preferences of different 

groups of people. Contrary to the implicit assumptions of previous research on selective 

exposure, neither diversity-seeking nor challenge-avoidance appears to be a fundamental 

facet of human behavior that describes all people. 

The presentation techniques of sorting and highlighting are not very helpful at 

making challenge more appealing to the challenge-averse people, except that highlighting 

may make a very small percentage of challenging content palatable. Future work should 

study additional presentation techniques, including more sophisticated displays of 

challenging and supporting content. Also, rather than trying to increase the percentage of 

challenging information in the collections shown to challenge-averse readers, it may be 

more effective to serve well the needs of those who are diversity seeking and provide them 

with the means to spread insights they gain from challenging content to the people who 

avoid such exposure in their everyday news reading. 
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CHAPTER V 
 

Presentation: Foresight and Hindsight Widgets7 

For those seeking to find ways to present diverse views to challenge-averse individuals, the 

results of the study in Chapter IV are disappointing. Neither presentation technique 

increased satisfaction with diverse collections. In this chapter, I briefly outline the design 

space for such widgets and then two field studies for evaluating these widgets. One of the 

studies is complete: I review the study design and the challenges we faced in executing it. 

The second study is in development; I discuss its design and why we believe it is superior 

to the first study in the chapter. 

Topic Question Findings and outcomes 

N
ew

s a
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re
ga
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rs

 Presenting 
diverse 
collections 

 

 What is the design space for visualizations 
intended to increase the balance of 
political items that people read online? 

 A sketch of a design space, 
including what information 
can be presented and when. 

 How can / should options within this 
design space be evaluated? 

 One completed but flawed 
experiment, lessons learned, 
and a new design. 

Table V-1 Summary of questions and findings in this chapter. 

                                                       
7 Daniel Zhou was responsible for the article classification portion of this study. Peter Andrews and Brian 
Ford built the Firefox extension and study website for the Digg and Reddit study; Jeremy Canfield 
contributed to its design. Cat Hong Le, Erica Willar, and Alexis Smith helped coordinate human subjects 
review and award subject incentives. Paul Resnick collaborated on all aspects of the study. 
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The design space for presenting political opinion diversity 

To help design and select which alternative visualizations to test, I outline a design space 

for interventions to increase the diversity of political news to which people are exposed, or 

at least make them better aware of their behavior. Features include the time at which the 

information is communicated and the type of information communicated. Most of the 

visualization approaches I discuss are designed to take advantage of one of two ways of 

combatting selective exposure: priming a norm of balance or fairness or increasing 

curiosity about the different views on a story.  

When the information is communicated 

A system can present the reader with information about an item or list of items at three 

times: before a user elects to read items (which I will call foresight), as the user reads items 

(“currentsight”), or after a user reads items, usually in aggregate (hindsight).  

Based on the principle of kairos – intervening at the right time and place (Fogg 

2007) – foresight is likely most effective for shaping a user’s behavior as it occurs, since the 

reader can consider the information when they make their choice. By contrast, 

currentsight may only increase awareness of what they are doing now. This awareness may 

affect future decisions or their perception of an item’s claims, but the choice to read the 

item has already been made. Finally, hindsight can reveal, to a user, their own reading 

patterns of which they may not be aware. By doing so, it can increase their awareness and 

understanding of their behavior over time and prompt reflection (Li et al 2010). 

The different presentation times are not mutually exclusive and likely complement 

each other. For example, a hindsight visualization might make a reader aware of an 

imbalance in their reading history, and a foresight visualization could then help them 

identify articles to read that would help to balance out their information diet.  
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What information is communicated 

The design of representations of viewpoint diversity of a reader’s information diet also 

involves many choices about what information to communicate. A visualization can 

simply describe the user’s behavior or choices, can include descriptive social information, 

or it could go a more prescriptive direction, including norms about what the reader 

should do, encouraging them to set goals and then monitor their progress against those 

targets, or by providing recommendations.  

DESCRIPTIVE INFORMATION  

Visualization might include only descriptive information about what the user could read, 

is reading, or has read (such the predicted bias of an item or a histogram of the reading 

behavior). It might also include social information about what the user does compared to 

others, such as how many and which friends have read an item, how their reading history 

compares to friends’, other visitors to a site, or similar others. This social information 

could serve as social proof of the value of other stories or reading patterns, or it could 

simply make people curious about what their friends and people like them are seeing. 

NORMATIVE INFORMATION  

The visualization could also add explicitly normative information according to progress 

against a designer’s goal or a commitment the user had made. Studies have shown that 

solely informational messaging about what others do, such as a comparison of one’s 

energy to similar homes, can have a “boomerang effect” on individuals who are 

performing better than their peers (Schultz et al 2007). Adding a normative message, such 

as a sad emoticon in reaction to poor-performing individuals and a happy emoticon in 

reaction to high-performing individuals, can eliminate the boomerang effect for people 

who are already performing well while still persuading those who are not performing as 

well (Schultz et al 2007).  
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People appear to believe in a norm of accessing diverse and balanced views. Fox 

News, generally regarded as one of the most ideological television news sources in 

America (Rendall 2001, Kull et al 2003, Pew 2005, Ramsay et al 2010, Krosnick & 

MacInnis 2010), finds value in marketing itself as “fair and balanced.” In a speech at the 

University of Michigan’s 2010 commencement, President Obama implored: 

Today’s 24/7 echo chamber amplifies the most inflammatory sound bites louder and 
faster than ever before. 

It’s also, however, given us unprecedented choice. Whereas most Americans used to 
get their news from the same three networks over dinner or a few influential papers 
on Sunday morning, we now have the option to get our information from any 
number of blogs or websites or cable news shows. And this can have both a good 
and bad development for democracy. For if we choose only to expose ourselves to 
opinions and viewpoints that are in line with our own, studies suggest that we 
become more polarized, more set in our ways. That will only reinforce and deepen 
the political divides in this country. 

But if we choose to actively seek out information that challenges our assumptions 
and our beliefs, perhaps we can begin to understand where the people who disagree 
with us are coming from. … if you’re somebody who only reads the editorial page of 
the New York Times, try glancing at the page of the Wall Street Journal, once in a 
while. If you are a fan of Glenn Beck or Rush Limbaugh, try reading a few columns 
on the Huffington Post website. It may make your blood boil, your mind might not 
be changed. But the practice of listening to opposing views is essential for effective 
citizenship. It is essential for democracy. 

Overall, people reacted positively to this message during and after the speech (Garrett & 

Resnick 2011, as well as the Ann Arbor Chronicle’s notation and my own cursory 

examination of reactions online). This is possibly because most people think the other 

side(s) should listen to their own perspective more, but also possibly because most people 

agree with the norm even if they do not choose it in the moment or are not aware of their 

own behavior. If the latter explanation is true, tools that remind people of a norm of 

fairness and that highlight when they are behaving inconsistently with this norm may be 

particularly effective. 
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GOALS AND TARGETS 

The choice to add normative information about progress relative to a designer- or user-

supplied goal implies a design choice about goals, though this does go beyond a 

visualization feature. Does the feature present a goal, and if so, should the goal be user-set, 

set by social information (what others do), or set by the system’s designer? If the feature 

promotes setting and/or pursuit of a goal, goal-setting literature provides a number of 

techniques for making it more effective. In general, goals should be specific and high, yet 

achievable, and people should have a way of monitoring their progress toward them (Seijts 

et al 2004, Locke & Latham 2005). The individual should be committed to the goal, and 

techniques such as asking them to record or state their commitment or explaining why the 

goal is important can increase their commitment (Locke & Latham 2002, Cialdini 2009). 

RECOMMENDATIONS 

Systems can also present recommendations from a variety of sources. Here, too, there are 

many options. Stories on a particular topic could be clustered, such as in NewsCube’s 

presentation (Park et al 2009), possibly increasing readers’ curiosity about the different 

clusters. Many news sites now recommend stories that are popular, both among their 

general audience and among a reader’s friends. If the user sets a goal, the system could 

also show recommended items that would help a reader meet his or her goal, such as 

conservative items to balance out a liberally slanted reading history.  

First study design 

In the first study, we sought to test two types of visualizations – a foresight widget showing 

articles’ predicted bias and a hindsight widget indicating reading history  – as well as their 

interaction. As with other studies in this dissertation, we focused on news aggregators 

where the main content is selected by users’ votes and that have substantial politics 

sections, specifically Digg and Reddit.  
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We created a user-installable extension to the Firefox web browser that augmented 

Digg and Reddit with two widgets: one that annotated individual articles according to 

their predicted slant and one that showed the reader a representation of their reading 

history. The extension was deployed in a field experiment, first to Digg users and then to 

both Digg and Reddit users. Our outcome variable was the political distribution and 

quantity of articles people read.  

Classification of articles 

Like the previous study, this experiment required articles with a known (or at least, 

reliably predicted) political slant. For Digg articles, we could obtain fairly reliable 

classifications by classifying some articles’ bias, classifying the Digg users who voted for 

those articles (who could be assumed to share political positions with the item), and then 

using those user and item classifications to classify additional articles. This method is 

detailed in Zhou and Resnick 2011. In addition to this automated method, we also used 

human raters to classify all of the articles. This allowed us to generate an immediate, 

automated classification for many items, and a more accurate, but slower classification for 

all items.  

We classified articles that appeared in the Digg politics section, which we crawled 

every ten minutes. Whether or not we could automatically classify the article as liberal, 

conservative, or neither, all articles were sent to a panel of workers on Amazon 

Mechanical Turk to be classified by human raters. When the human raters disagreed with 

the automatic classification, we used the human rating. 

For reasons I elaborate on later, we chose to expand the study to include the Reddit 

site, items, and readers. Unlike on Digg, the majority of Reddit users’ votes are not 

accessible through the API. This made classification of Reddit items slower because we 

could not use an automated process to generate an initial classification, as we did with 

Digg items. On Reddit, we monitored and classified articles from a number of political 
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sections (or “subreddits”), including: /politics, /uspolitics, /democrats, /republican, 

/conservative, /progressive, and /libertarian. The sections were selected for being the most 

popular sections with primarily political content. For articles that appeared only on 

Reddit, an initial, automated classification was not available unless the item had already 

appeared on Digg. 

Because the human classification process took time, and because the classification 

from Mechanical Turkers sometimes differed from the initial classification, users 

sometimes saw articles before they were classified or with a classification that differed 

from their final classification. In these cases, we tracked their click behavior according to 

what they saw at the time for the purposes of our analysis, but updated their reading 

history and our hindsight widget (described below) according to the article’s eventual 

classification.  

The BALANCE widgets 

We designed two widgets: one that highlighted political articles according to their 

predicted slant or bias (foresight) and one that reflected users’ reading behavior for the 

week to date along with normative messaging (hindsight). 

FORESIGHT 

The foresight widget (Figure V-1) replaced the standard vote box on Digg or Reddit for 

political articles, shading the background (normally yellow) according to the predicted 

bias: blue for liberal, red for conservative, and grey for independent or neutral. This 

widget would help make people aware of the predicted bias of articles as, or before, they 

chose to click on and read them. This widget is similar to, and partly inspired by, the 

Memeorandum Colors widget,8 developed by Andy Baio. Memeorandum clusters current 

                                                       
8 http://waxy.org/2008/10/memeorandum_colors/ 
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news stories with articles from a variety of sources; Memeorandum Colors highlights those 

source links according to the predicted bias of the source. 

 
Figure V-1 Example foresight visualizations. Left: Memeorandum Colors. Right: our foresight widget on 
Digg. 

HINDSIGHT 

The hindsight widget showed an approximate histogram of the user’s liberal and 

conservative articles clicked on (which we used as a proxy for read) for the week to date. 

This was motivated by the idea that while many people might agree, in principle, with the 

normative goal of reading diverse news, they might not realize just how skewed their own 

reading behavior actually is. We considered several possible designs for this widget 

(Figure V-2). 

  
Figure V-2 Early hindsight widget mockups. 

As noted earlier, communicating a norm can increase the persuasive power of 

information, particularly when an individual’s present behavior deviates from that norm 

(Schultz et al 2007). A simple histogram of liberal and conservative items does not 

communicate any form of norm – just the individual’s own behavior. We believed that 
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communicating an injunctive norm (that is, what one should do (Cialdini et al 1991)) 

might be more effective than a simple histogram. Apropos to the name of the research 

project – BALANCE – we chose to implement the hindsight widget as a character on a 

tightrope, with his balance affected by the histogram. If one’s reading behavior is too 

skewed, the character is in peril of falling from the tightrope (Figure V-3). We hoped that 

this would encourage subjects to consider the norm of fairness and balance, one of the 

methods for counteracting selective exposure (Sears 1965), though it was also possible 

that they would treat the exercise of balancing the character as a bit of a game. The 

hindsight widget reflected history for the week-to-date, which was reset on Sundays. 

 

Figure V-3 Example hindsight visualizations. Left: No articles (beginning of week), center: unbalanced, 
right: balanced.  

The combination of the foresight and hindsight visualizations allows people to see 

if their reading behavior is imbalanced and then skim a list of articles to find some 

balancing selections to immediately take corrective action. In contrast, we hypothesized 

that the widgets might have different effects when seen alone. Readers viewing only the 

foresight widget might use it, intentionally or unintentionally, to identify and read 

agreeable articles. Readers viewing only the hindsight widget might try to balance their 

reading history, but have a more difficult time doing so without the foresight widget to 

help them quickly identify the articles needed to balance their reading, and thus a 

hindsight-only view might be less effective than hindsight plus foresight.  
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Experiment design 

To test the effects of our widgets on news aggregator users’ reading behaviors, we designed 

a field experiment with a within-subjects design. After clicking on one of our ads or links, 

each subject would land on the study website, where the project was explained. If 

interested, they would then:  

1. complete the consent process, 

2. create an account by providing their email address, creating a password, and providing 

their mailing address (for delivery of participation incentives, described below), 

3. complete a survey, consisting of items from the Big Five personality inventory 

(Goldberg 1990)9 and two seven-point scales for political preferences (extremely 

liberal to extremely conservative and strong Democrat to strong Republican),  

4. and download and install the Firefox extension. This extension was custom built for 

the logged-in user, so that we could associate their survey responses with the behavior 

recorded by the extension.  

Once installed, the browser extension would annotate their news aggregator (at 

first Digg, and later Digg and Reddit) with the widgets according the subject’s current 

experimental stage. Each stage would last until the user had clicked through to a certain 

number of classified articles during that stage. The stages were foresight only (30 articles), 

foresight + hindsight I (60 articles), hindsight only (30 articles), no widgets (30 articles), 

foresight + hindsight II (duration of use / study). During the stages without a hindsight 

widget, a placeholder with information about the study was shown. This combination of 

stages would allow us to measure the effects of each widget on its own and of the widgets 

together. By returning the subjects to a no-widget condition for 30 articles, we would also 

be able to learn whether any behavior change was (at least briefly) lasting without the 

                                                       
9 We used 26 questions, with a focus on openness: ten openness questions and four questions from each of 
the other dimensions of extraversion, agreeableness, conscientiousness, and neuroticism.  
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support of the widgets. It would, however, risk that one stage influenced the next, and we 

did not counterbalance the stages to control for this possibility. 

We originally intended to display the widgets and track reading behavior on just 

the Digg site, because we could quickly generate fairly reliable, automatic classifications for 

Digg articles and because developing and maintaining a plugin for one site required less 

developer time than doing so for two sites. Difficulties in advertising and recruiting Digg 

readers to be subjects led us to later expand to include Reddit readers and items as well. 

Subject recruitment 

We planned to recruit subjects through advertisements on Digg. To incentivize 

participation, active subjects (i.e., those from whom the widget logged activity on any 

given day) would be eligible for a daily drawing for Digg (and later Reddit) merchandise, 

such as hats, shirts, stickers, laptop sleeves, and mouse pads. 

After delays in arranging to run the advertisements on Digg, we began recruiting 

through word of mouth (posts to mailing lists and social websites) and advertising on the 

Google AdWords and Facebook networks for keywords such as politics, political news, 

and political opinion, beginning on 5 August 2011. Less than twenty people signed up in 

response to this initial campaign, so we began modifying our extension, classification 

processes, and study design to work on the Reddit site as well, and were able to deploy a 

revised version that worked on both Digg and Reddit on 16 August.  

Eventually we (1) expanded the study to include Reddit, and (2) were able to run 

our recruitment advertisements on the Digg (starting 20 August) and Reddit (starting 18 

August) politics sections. This resulted in a major traffic increase to our study website and 

a large increase in signups. 337 people consented to participate the study. 11 people 

subsequently abandoned it at the account creation stage, 11 more dropped at the survey, 

and 62 abandoned the study when they did not install the Firefox extension. 253 subjects 

completed the signup and installation process. 
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Results: major issues with study design  

By October 28, only 33 of those 253 subjects had moved past the foresight only stage: 

seventeen reached the foresight + hindsight I stage, five reached the hindsight only stage, 

four reached the no-widgets stage, and six reached the end of the study (foresight + 

hindsight II). We only ever received data from 178 of the 253 subjects (70%), suggesting 

that 30% either installed the extension on a browser that they never used, that they were 

not actually Digg or Reddit users, or that there were undiagnosed compatibility issues 

between our extension and others installed on the computer. These numbers are too small 

to use to make meaningful conclusions about the widgets’ efficacy at an overall level, let 

alone at levels of individual personality differences. What went wrong?  

First, the click through rate on political articles was very small. Subjects read 

political articles at a rate far lower than we expected. For the 178 readers for whom we 

received data, they visited Digg and/or Reddit pages listing stories an average of 5.88 times 

per day (median=1.89, sd=11.46). They clicked through to 0.95 (median=0.40, sd=1.80) 

political stories per day while they were in the study. A few outliers inflate both of these 

averages (Figure V-4). Perhaps skimming article abstracts on Digg or Reddit is sufficient 

news exposure for users of those sites, and so they rarely click through to news stories. It 

is also possible that our subjects were getting most of their political news elsewhere – 

directly from news websites, through other aggregators such as Google News, through 

mobile applications, and so on – and were getting something else, such as a social 

experience10 or news on a different topic, from Digg and Reddit. Or perhaps people mostly 

just glance at headlines and snippets, regardless of the site. Whatever the cause, there are 

two severe problems with the combination of this reading pattern and our study and 

intervention design. First, the median user would take more than two months to progress 

                                                       
10 Though if so, this social experience is not on the comment pages of the political articles: they visited only 
0.19 political story comment pages per active day on the study.  
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through just one stage of our study. Second, the intervention was designed to reflect 

weekly political reading history; for the median subject, that history would have been 

based on fewer than seven articles. 

 
Figure V-4 Distribution of average political story clicks and Digg and Reddit pageviews per day for each 
subject. Boxplots with Tukey method. 

Recruitment was our second challenge: had we been able to recruit more subjects, 

we would have at least been able to draw conclusions about those who read many articles. 

Digg and Reddit actually account for a fairly small amount of the Internet news audience, 

with roughly one-tenth the daily visitors as sites such as Google News (Purcell 2010). We 

believed that recruiting by advertising specifically to the sites’ visitors would help us reach 

people who would be a good match for the study. We were also challenged by declining 

Firefox market share between our study’s inception and launch; two-thirds of the visitors 

to the study website were using other browsers. This was reflected in comments about our 

study on Reddit as well as emailed feedback: many wished for and requested a Chrome 

extension. If many users installed our extension in Firefox and then switched right back to 

using Chrome or another browser, this might explain why we never received visit data 

from 30% of the users who installed the extension.  

Finally, even if reading behavior and audience were different, the article pool on 

Digg and Reddit’s politics sections was and is limited. During the study, we classified a 

total of 33,358 articles, 18,606 on Reddit and 14,752 on Digg. On Reddit, 52% of the 

classified articles were liberal, 34% were neither or independent, and only 13% were 

conservative On Digg, 46% were liberal, 32% were neither or independent, and 25% were 

Political story 
clicks per day 

Digg and Reddit 
pageviews per day 
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conservative. From our anecdotal observations, the home pages were often more skewed 

than the politics sections: the minority rarely made it to the front page, though our 

logging data is unfortunately not in a format that allows us to quantify this. Thus, a reader 

with a liberally skewed reading history had very few conservative articles that they could 

read to balance out their history.  

One other difficulty arose unrelated to the study design. Around the time that we 

expanded the study to include Reddit users, the pre-survey stopped recording responses to 

the Big Five personality questionnaire. We did not observe this problem until after the 

study, at which point it was too late to contact subjects and ask them to re-take the survey, 

or to fix if for future subjects. The occurrence of this issue and our delay in noticing it 

teach two important lessons: (1) use unit tests to validate that all existing code functions 

before deploying updates to study software, and (2) build a more comprehensive 

dashboard to enable study administrators to quickly note any data problems that do occur.  

The sum of these difficulties with subjects’ limited reading of articles by clicking 

through links on Digg and Reddit, recruiting subjects, offering a sufficiently diverse 

selection of political, and technical issues caused this experiment to fail. The challenges, 

however, can be at least partially mitigated with a different study design that is less reliant 

on Digg and Reddit. 

An alternative study design 

Ideally, an improved study design would allow us to observe subjects’ reading behavior 

across all of their political news sources, rather than just articles they arrive at through 

Digg and Reddit, be able to classify all of these observed items, and offer the user sufficient 

value that they would want to install it and participate in the study, including answering a 

questionnaire and sharing their information with us. 
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Observing behavior 

 There are a number of possible technical implementations that would get at least part way 

there, including a system-wide proxy, an application that analyzes and transmits a user’s 

history once, and a browser extension that accesses a user’s entire web history, both before 

installation and on an ongoing basis.  

A system-wide proxy. In this design, the user would configure all web traffic on 

their device or devices to pass through a server administered by researchers. This server 

would record the traffic that passes through it. This would allow us to track behavior from 

all web browsers and applications (unless they overrode the proxy), across multiple 

devices, including mobile. Workplace computers would likely still be excepted, since many 

companies use their own proxies and/or do not give their employees the administrative 

rights required to set a proxy. Unfortunately, it is also somewhat resource-intensive to run 

a proxy and requires high uptime in order to keep subjects happy. Menchen-Trevino and 

Karr pursued exactly this approach with their Roxy software, but note that renting a 

dedicated server was necessary in order to support their 46 study participants (2011). 

Their proxy captured the entire request and content for all sites visited, though the 

participant could select a private session or a guest session.  

History analysis application. Another approach would be to write an application 

that users download and run to analyze their entire history. The analysis could be 

conducted locally (preserving more privacy), with results submitted our system, or 

remotely on our system. Such an application could read from the history directories or 

files for all major web browsers. Variations would need to be written for different 

operating systems, and it might fail on non-standard configurations.  

Browser extension(s). Similar to the original study design, we could also use a 

browser extension that monitors a user’s tabs (collecting history as they use their browser) 

and/or accesses and classifies their entire browsing history. As with the application, 
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classification could occur locally or remotely. Unlike the application method, a single 

extension could be cross-operating system, and users may also be more willing to install a 

browser extension, with limited permissions, than a full application. Collating history for 

the same user across multiple browsers would require that they create a log-on and that 

they install multiple extensions. Neither the browser extension nor the history analysis 

application would be able to observe traffic from mobile applications or non-browser 

desktop applications (such as an RSS reader), and, unless the user syncs their browsing 

history between their mobile and desktop browsers, would not be able to track articles 

read on the mobile browser. 

Classifying articles 

There are two primary questions for the classification of articles: first, what classification 

method should be used, and second, should classification occur server-side or client-side? 

When we had only a limited set of articles – the popular political articles on Digg 

and Reddit – it was possible to use a panel of Mechanical Turk workers to classify all 

articles in a reasonably short period of time. We paid at least $0.02 for each rating, with 

four ratings per item; this approach is obviously not suitable for classifying entire web 

histories for hundreds or even thousands of users. 

Fortunately, a variety of researchers have succeeded at using machine learning to 

classify articles as liberal or conservative, fairly reliably, over time. This includes work by 

Oh et al (2009) and Dehghani et al (2011). These classifiers would need up-to-date 

training data to reflect current political figures, positions, and topics, but classifiers using 

Digg articles and votes, or articles linked from classified blogs, similar to the approach 

used in Chapters II-IV and further developed by Zhou, Resnick, and Mei (2011), could 

provide a steady source of classified articles to use as training data. These classification 

methods, however, require accessing the website, downloading the page, extracting the 

article, and then classifying it first as political or not, and, if political, then according to its 
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bias. Thus, while they would be appropriate for classifying items as a user accesses them,11 

they would not be suitable for providing a foresight visualization, and, if used to process a 

web user’s existing history, there would be a delay before feedback is available.  

An alternative approach is to classify simply based on an item’s URL. This is how 

Memeorandum Colors provides its foresight visualization: it indicates the political leaning 

of sites that typically link to the source, though the individual item’s bias may differ. There 

is also precedent for building hindsight widgets based on URL-based classification. In 

2010, Slate released a tool that let people check the bias of their reading history against 

112 websites that had been classified by Gentzkow and Shapiro (2011) and then showed 

them their isolation score and how they compared to other Slate readers who had used the 

tool (Matlin et al 2010).  

Enticement to participate 

There are different ways we can motivate people to participate in the study. The first is the 

standard approach of incentives, such as a flat incentive for participation in the form of 

money, a gift card, or a token of appreciation, or prizes or a lottery, such as used in the 

study we did try. Alternatively, we could offer a tool that is sufficiently appealing on its 

own. Both Memeorandum Colors and Slate’s isolation index tool attracted substantial 

coverage from traditional media sources and bloggers, showing that this strategy can work 

and that many people find such tools interesting. On the other hand, our experience with 

recruiting for the previous study demonstrates that generating interest and coverage 

sufficient to get these signups can be quite difficult. At a minimum, we have to build an 

interesting tool and get it in front of the right people. This is probably harder for some 

types of visualizations than others. In aggregate, such as in a hindsight visualization, URL-

based classification may provide acceptable accuracy, but even a modest number of 

                                                       
11 Article extraction could occur either in the browser (through the extension) or through the proxy, 
depending on which method is being used to observe the user’s web activity.  
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inaccuracies might cause users to become frustrated with a foresight visualization – which 

exposes the classification of each individual item – and uninstall our extension. 

By offering incentives, we would likely get a sample that is somewhat more 

representative of the population – especially if care is taken in recruitment. By offering 

only a compelling application, though, we could attract participants who are more likely 

to represent the actual users of such a tool, and who are more likely to explore its features 

and make use of it. 

Proposed study design 

There are many possible studies within this design space, but I propose one that uses a 

browser extension, URL-based classification on our server, and a hindsight widget.  The 

browser extension allows for collection of past and ongoing data and requires little user 

configuration. To reduce barriers to installation, the extension will generate its own 

unique identifier when installed. There will be no signup or account creation process. 

URL-based classification is most suitable for real-time classification of a large number of 

sources, and should provide suitable accuracy, at least in aggregate.  

Subjects would be recruited based on their interest in seeing the hindsight 

information, though an additional panel meant to better represent the general population 

of Internet-using Americans could be recruited for comparison. To classify the largest 

number of sites possible, URL-based classification would be based on the Memeorandum 

Colors classification as well as the blog and Digg-vote datasets outlined in Chapters II-IV. 

A rough prototype of the Chrome extension, which shows a persistent indicator of the 

subject’s balance in the browser window and provides more detail when clicked, is shown 

in Figure V-5. The persistent icon helps people to monitor their behavior, with little effort, 

and to make changes in response. Participants have responded positively to using 

persistent, glanceable visualizations for self-monitoring in studies in other domains, such 
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as physical health (Consolvo et al 2008) or personal transportation choices (Froehlich et al 

2009).   

 
Figure V-5 Example Chrome extension with hindsight visualization. The icon in the browser provides 
persistent indication of the reader’s history for the week, while clicking shows a larger view. 

After the user installs the extension, the extension will transmit their previous 

month’s web history to our server. Before being able to see our analysis of their browsing 

history, the subject would be prompted to complete a brief questionnaire, consisting of a 

twenty-item version of the Big Five personality index (Donnellan et al 2006), age, gender, 

and two questions about their political preferences (the same two as in the last study). 

After showing a representation of their reading balance, the extension would continue to 

run as they browse, updating the visualization and transmitting their browsing history to 

our server.  

This design allows us to collect and retain users’ browsing history, including their 

history before they installed the extension and their browsing activity after installation – 

either their entire history or just the subset of URLs that matches our list of news and 

opinion sites. This allows further analysis beyond what we are able to capture in real time. 

Privacy is a concern in this design, but this concern is mitigated by: (a) transmitting the 

data over a secure connection, (b) not collecting the subject’s email address or identifiable 

information as part of the registration process, (c) possibly discarding some particularly 

sensitive URLs (e.g., social network sites, search terms) on the client side before 
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transmission or limiting collection to a whitelist of URLs of news sites, and (d) disabling 

IP-logging on the web server. The data we would collect is already collected by many 

companies (whether or not users know it): Google receives all information typed into 

Chrome’s “omnibox” (Chrome’s combined address and search bar), and Twitter and 

Facebook are able to track users across sites that use their tweet, like, and share widgets, 

unless those users have disabled third-party cookies. 

PERSONALITY AND BROWSING HISTORY 

Even without an intervention or experimental groups, the combination of subjects’ 

browsing history, their personality survey responses, and their political leanings can be 

used to answer several questions about how people access news online. This includes 

analyzing for individual differences, based on personality attributes, on the number of 

news articles read, their political balance, and possibly ratio of headlines they have seen to 

the number of articles they clicked on to view in detail. Political balance would be 

represented either as their KL divergence from an ideal, balanced reading (50% 

conservative, 50% liberal) or from the balance of liberal, neutral, and conservative sources 

present in our URL classifier, weighted according to their audience. We have previously 

conjectured that people who score high on openness might read more articles and have 

more balance in the articles they read, for example. Analysis would be regressions using 

the five personality attributes, gender, age, and political leaning (a combined variable) as 

the independent variables and their reading behaviors (described above) as dependent 

variables. We would also be able to reproduce Gentzkow and Shapiro’s isolation index 

analysis (2011), with the addition of the personality data. 

One limitation is that we are only able to describe their desktop browsing history 

in one web browser. If, for example, someone who is more open also splits their web 

browsing and news readership across multiple devices and web browsers, we may not 

observe the hypothesized additional reading (or may even observe less reading) even if it 
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is occurring. This is one way in which the study design could made be stronger by using a 

proxy to collect history rather than a single browser extension, but the added 

complications of recruiting willing subjects, helping them set up the proxy on all of their 

devices (with many possible operating systems), and maintaining a proxy with sufficient 

speed and uptime to retain subjects make a proxy impractical. 

TREATMENT GROUPS 

Of the design space of visualizations, the balance-man hindsight visualization – an icon 

persistently indicating the balance of a user’s reading history, as well as an injunctive norm 

about what that balance should be – is a promising starting point for investigation. This 

leaves open the question of what to use for the comparison group. One, easy option is to 

compare their history post-intervention to their history pre-intervention, in a within-

subject design. This presents some challenge for analysis. Some subjects will be 

imbalanced in their recent history, but, even without the intervention would regress to the 

mean during the study period. If, however, we do not see other subjects becoming more 

imbalanced in their browsing history during the study period, we would still able to 

attribute observed effects to the intervention. This design, however, also conflates the 

effect of being in a study (and being prompted to attend to one’s reading balance) with any 

effect of the widget. It is also vulnerable to history effects: if a major news story (e.g., one 

that people cannot ignore) breaks during one of the time periods and is covered more by 

one side or another, it will affect the balance of subjects’ reading. The last two issues are 

more problematic confounds. 

One way to control for this would be to deliver different strengths of the history 

visualization. The first and most powerful would be the persistent icon, updated as 

subjects’ browse the web and reset weekly. The second would be a weaker version, which 

displays a report when they first install the widget and then does not update again until a 

week or month later. This would make the experiment into a test of the importance of a 
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persistent and regularly updated self-monitoring tool versus one that is infrequently 

updated. Alternatively, we could deploy the man-on-tightrope visualization to some 

subjects and a simple histogram (in which no stick figure is in peril) to others. Again, this 

would be a different experiment on the effect of the different styles of hindsight 

visualization and our approach of communicating an injunctive message using the stick 

figure.  

Another option is to use a foresight-like visualization as the control. I have been 

reluctant to deploy such a tool as part of this study, because URL-based classification will 

be less reliable for individual items than in aggregate. Visible mistakes in the classification 

of items could cause people to abandon the tool or to not trust the aggregate ratings, and 

thus diminish its efficacy for encouraging them to reflect on and possibly change their 

reading behavior. The positive reception to Memeorandum Colors, however, suggest that a 

foresight tool using URL-based classification is viable, at least for one news aggregator and 

its limited set of sources. We could use a “currentsight” visualization as the control by 

replacing the BALANCE-man icon with a single square indicating the predicted bias of 

the user’s current page (rather than shading links, as our previous foresight widget and 

Memeorandum Colors did). It is also possible that such a tool could be used to collect 

ratings for additional individual pages and sites, simultaneously giving readers a way to 

take action, other than uninstalling the extension, about frustrating misclassifications and 

improving our ability to classify pages and sites for future studies. This widget might also 

change subjects’ behavior somewhat, but, because it only shows classifications for the item 

they are currently viewing (i.e., items they already have chosen to visit), the effect should 

be small.  

Finally, we could use an entirely different tool for the control. One possibility is the 

CubeThat system that Sidharth Chhabra is developing (Figure V-6). CubeThat collects and 

then clusters news stories according to the approach developed by Park et al for NewsCube 
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(2009). When a reader visits an item for which there are CubeThat recommendations, they 

can click the icon in the browser to view clusters of links to recommended articles on 

different facets of the story. Park et al demonstrated that such clusters increase readers’ 

exploration of news items, possibly by making readers curious about the different aspects 

or the differences between clusters while also not indicating that some articles might be 

from aversive sources. At the time of writing, CubeThat is nearly ready for deployment. 

Subjects could download and install an extension that provides either the BALANCE 

hindsight widget or CubeThat, and we could then compare the reading behaviors of the 

two groups. 

 
Figure V-6 CubeThat running on a news article on the CNN website. Credit: Sidharth Chhabra.  

 There are two primary issues with using CubeThat or another tool for the 

intervention. First, we do not think that CubeThat is a placebo; instead we believe that it 

should increase subjects’ news exploration. If we compare two interventions, both of 

which we believe should work, we may not be able to tell if the widgets have no effect or if 

both have a similar effect (though this is mitigated by having subjects’ pre-intervention 

web histories). It would, more accurately, be a test of two ways of combating selective 

exposure: priming a balance norm, with a hint of gamification, using hindsight versus 
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increasing readers’ curiosity about other aspects to a story using CubeThat. Second, 

marketing this study to subjects, without using incentives, could be a challenge, since we 

would need to randomize which extension the subject received. People could be reluctant 

to sign up for a study and install an extension that will randomly deliver one of two very 

different experiences. 

In contrast, I can advertise an extension that shows the hindsight widget, either 

after a delay or immediately, using the same, simple recruitment materials. Thus, I prefer a 

traditional control: they install the extension, it reports their history to us, but they do not 

get to view their history until one month later. There is some risk, though, that if subjects 

do not get immediate gratification, or are asked to wait for a long period of time, they will 

uninstall the extension. I may, then, decide to also deploy a currentsight visualization as 

control, and to also use that widget to collect improved website classifications from 

subjects in that group. At the end of a month, subjects would also be able to view the 

hindsight widget. A currentsight visualization could also be advertised with similar 

language, as it presents similar information as the hindsight visualization, just over a 

different time frame (current page vs. the last week or month). The use of two control 

groups splits the subject pool into more than one control group, which increases the risk 

of a Type II error if we are only able to recruit small numbers of subjects. I believe that the 

potential benefits for recruitment and retention may make it worth this risk. 

ANALYSIS 

The study design consists of both a between subjects and a within subjects component. 

This allows for an analysis that compares the differences between subjects’ pre- and post- 

intervention reading behavior across the treatment groups. It would otherwise parallel the 

analysis described in the personality and browsing history section. 
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EXPECTED OUTCOMES 

From the revised study, we will be able to learn (1) whether any of the big five personality 

indicators and/or any of the demographic information we collect predict balance or 

quantity of political articles read online and (2) the effects one particular hindsight widget 

on subjects’ reading history.  If this new study is successful, it will also be a proof of 

concept for future studies of visualization techniques intended to increase the balance of 

political articles that people read. 
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CHAPTER VI 
 

The Prevalence of Political Discourse in Non-Political Blogs12 

In the previous four chapters, I focused on design challenges and alternatives for news 

aggregators that select and present political content, as well as individuals’ preferences for 

the opinions that appear on such sites. Many other recent studies of politics in online 

spaces have also focused on political spaces: Usenet groups (e.g., Kelly et al 2005), blogs 

(e.g., Adamic & Glance 2005; McKenna & Pole 2007, Koop & Jansen 2009, Yano & Smith 

2010), media and news sites and their audiences (e.g., Park et al 2009, Park et al 2011), and 

political and media accounts on social network sites (e.g., Golbeck & Hansen 2011). These 

political spaces are no doubt important, but this focus neglects that a good deal of political 

opinion formation occurs outside of explicitly political venues. Even people very interested 

in politics may be exposed to political news and opinion in spaces not devoted to those 

topics, and people who are less interested in politics may never visit explicitly political 

sites. In this chapter, I use a sample of blogs hosted by Blogger.com to show why the 

studies of online political discussion should be broadened to include non-political spaces. 

Some of the most alarming support for concerns about polarization in online 

political discussions has come from studies of political blogs. For example, Adamic and 

                                                       
12 This chapter first appeared as Munson, SA; Resnick, P. 2011. “The Prevalence of Political Discourse in 
Non-Political Blogs,” Proceedings of ICWSM 2011. Erica Willar and Emily Rosengren helped code the blog 
posts and comments; participants at the DIAC-08 conference provided helpful feedback on an earlier 
version of this work. 
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Glance (2005) found that political blogs rarely link to blogs expressing opposing views. 

Readership patterns are also polarized: political blog readers are more polarized than 

people who get their news through television (Lawrence et al 2010). Gilbert et al (2009) 

analyzed comment threads on several prominent blogs and found that political blogs are 

echo chambers; a comment was more than three and a half times as likely to agree with 

the original blog post as it was to disagree. 

As previously discussed, other work challenges these alarms. Kelly et al found 

diversity in discussions within some political USENET groups (2005), and Stromer-Galley 

found that participants in online political discussions report seeking out diverse opinions, 

though she was unable to determine the actual diversity in the discussions (2003). Survey 

research from the 2004 election suggested that readers of online political content are not 

using the tailorability of the web to filter out contradictory viewpoints and may in fact see 

a wider range of opinion than counterparts receiving news from traditional sources 

(Horrigan et al 2004). In the study in chapter IV, I found mixed results: some people 

actively seek out opinion diversity in their information sources, while many others are 

averse to politically challenging material.  

Empirical studies indicate that online political discussions have the potential to 

approach deliberative ideals. Price and Cappella created a political chat room to use as a 

research setting (2002). They introduced a random sample of people to this research 

setting and then measured indicators of quality of online discussion and its impacts on 

participants, including opinion change, opinion quality, electoral engagement, social trust, 

community engagement, distortions, and alienating effects. The researchers observed 

positive outcomes in discourse quality and civic engagement. Might some of the elements 

seen as necessary for such deliberations be present in blogs? 
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Topic Question Findings and outcomes 

Non-political spaces 
 

 

 Does political 
discussion occur in 
non-political spaces 
online? 

 On Blogger, half of the political discussion occurs on 
non-political blogs. 

 If so, do people treat it 
as taboo? 

 When politics comes up on non-political blogs, it elicits 
as many comments as non-political posts. These 
comments engage the political content and include 
some disagreement.  

Table VI-1 Summary of questions and findings in this chapter. 

Politics in non-political spaces 

Several decades of work within political sociology has shown that political opinion may be 

frequently, even primarily, shaped through non-political intermediaries, such as friends 

and family members, opinion leaders, etc. (Katz 1957). This happens in the broad context 

of social interactions at times and in places where participants are not explicitly seeking 

out political information (Putnam 2000, Habermas 1962) but where “chance encounters” 

(Sunstein 2001) with opposing views may occur.  

Some recent work has shown the value and importance of studying politics online 

wherever it occurs, even outside of political and news spaces. Researchers found a 

correlation between the quantity and sentiment of Twitter mentions of candidates on the 

one hand and both political debate performance (Diakopoulos & Shamma 2010) and 

election results (Tumasjan et al 2010) on the other. During the 2010 US midterm 

elections, 8% of online adults reported posting political content to Twitter or another 

social network site, and 11% said they discovered on a social network site for whom their 

friends voted (Smith 2011).  

When politics comes up in non-political spaces online, we might expect the 

discussion to more closely approximate deliberative ideals than conversations in political 

spaces. The reason is that participants with more diverse views may be present, given that 

the audience formed around some other topic, and the desire to maintain relationships 

formed for other reasons may make them more disposed to listen to each other and to 
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make the effort to frame arguments in a way that opponents will understand. If political 

discussion does occur frequently in non-political spaces online, then, we argue that such 

spaces will be important settings for study of online political discussion. 

Through survey research, Wojcieszak and Mutz (2009) found that political 

discussion does occur in non-political spaces. People reported that of online apolitical 

chat rooms and message boards they were part of, between 30% and 70% “ever talked 

about political topics or controversial public issues.” It is not clear, however, how 

frequently these topics come up or the nature of the discussions. Goel et al (2010) found 

that Facebook users are often unaware of differences of opinion with their Facebook 

friends, suggesting that political topics come up infrequently or that people do not reveal 

their opinions when they do come up.  

Eliasoph’s investigations of political speech (1998) found that both jokes and 

serious discussion about politics in social clubs tended to be met with silence rather than 

provoke a discussion on the topic, either out of ignorance or to avoid expressing 

disagreement in a social setting where they did not know the opinions of others or knew 

that others disagreed. Mutz and Martin (2001) also note a tendency to avoid political 

disagreement in interpersonal relationships in order to promote social harmony, and 

Noelle-Neumann (1993) found that this is particularly true in social contexts with diverse 

views. Given the mixed social contexts of many personal or non-political blogs – where 

readers may be coworkers, friends, family, acquaintances, potential employers, or 

strangers – might bloggers choose to stay quiet rather than risking offense? 

We are left, then, with important empirical questions. In this chapter, I investigate 

the empirical prevalence of political posts in different types of blogs, and the reactions 

those posts get. In particular, I answer the following questions:  

 How prevalent are political blog posts on non-political blogs? 

 Relatedly, what is the distribution of political blog posts across different 

categories of blogs? 
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When readers of non-political blogs encounter political posts, do they treat them as taboo, 

or do they engage with the political content of the post? 

Methods 

To study these questions, we used a collection of posts and comments from blogs hosted 

by the blogging service Blogger. Each blog was categorized into one of eight categories and 

each post was categorized as political or nonpolitical.  

Data set and collection 

From 6-20 January 2008, we automatically monitored Blogger.com’s “recently updated” 

list, checking it at periodic intervals to identify blogs that were written in English, had 

existed at least since 31 August 2007, and had at least five posts total. This produced an 

initial sample of 23,904 blogs written in English and that had a reasonable level of author 

activity and some longevity. On 3 June 2008, we used the Google Data API to download 

all of the posts for each of these blogs that still existed. This sampling method does 

introduce some bias into our sample, as blogs with more frequent posts are favored for 

inclusion. We wanted to ensure that the blogs in the study had some minimum level of 

activity and audience, so we further constrained our sample to exclude blogs with less 

than twenty posts and less than five comments total. The combination of requiring 

comments and that the blogs existed from August 2007 until at least June 2008 also had 

the effect of eliminating many spam blogs. 

Classification of posts 

Human coders classified 6,691 posts as political or non-political. These posts were selected 

through a combination of purposeful and random sampling. Initially, we drew 2000 

random posts from the full sample of posts. While coding these posts as political and 

nonpolitical, we realized that our set of blogs still contained many blogs that were either 

spam or not written entirely in English, so researchers looked at each blog and removed 
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many non-English and spam blogs, reducing the number of blogs to 8,861 (and the 

number of sampled posts to 1,691). To increase the number of political posts for training 

purposes, we coded the originally sampled posts as political or non-political, then 

identified blogs that had at least one political post in the original sample and drew an 

additional 4,000 posts at random from those blogs. We also added another sample of 

1,000 posts drawn randomly from all of the posts in our sample. 

We considered posts about public policy, campaigns, and elected or appointed 

officials as political, and did not restrict this definition to politics in the United States. 

Posts were classified as political even if the political content was only a brief mention in a 

much broader post; that is, we coded for the presence or absence of political remarks, not 

for the primary topic of the post. Comments (if any) were not included in the text to be 

classified, so the label was based only on what the post author wrote in the post title, 

keywords, and body. To assess the validity of this measure, two human ratings (by a 

researcher and an undergraduate student employee) were collected on a randomly 

selected subset of 500 of these posts, after the two raters first discussed 25 posts that one 

researcher rater found to be difficult to classify. The kappa score (Cohen 1960) between 

the two human raters on the 500 randomly selected posts was 0.969, and so a single rating 

of the remaining posts was collected. The classification yielded 1,676 political posts and 

5,015 nonpolitical posts. 

The political posts on nonpolitical blogs took a variety of forms. Some posts 

encouraged readers to vote. Others asked questions (e.g., a lengthy post discussing a 

child’s illness asks “why can’t we get universal healthcare for children?”). Some of these 

political posts were re-posts of something the author received by email or found on 

another blog. Others included quick, throwaway references (e.g. a quick complaint about a 

political figure in the middle of a mostly unrelated post). Some of these posts were also 

much longer pieces, expressing disapproval about a political figure or action, or talking 

through their decision about how to vote in an election. 
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With the human-coded data as a training set, we used Weka (Witten & Frank 

2005) to classify each post as political or nonpolitical. For tokens, we lowercased each post 

and took the 10,000 most common alphabetic strings in the training set. Stemming was 

not used. We then reduced the features using Weka’s implementation of correlation-based 

feature subset selection (Hall & Smith 1999). After evaluating several classifiers, we used 

Multinomial Naïve Bayes (McCallum & Nigam 1998). 

 10-fold cross validation 1000 random, hold-out posts 

Accuracy 0.965 0.985 

κ 0.902 0.902 

Specificity 0.997 0.995 

Sensitivity (Recall) 0.869 0.874 
Table VI-2 Classifier performance measures. 

Table VI-2 presents two sets of performance measures for this classifier. The first is 

from a 10-fold cross validation on the full set of posts classified by human coders. Because 

the full set over-sampled political posts, the second evaluation classified the 1000 posts 

drawn uniformly at random, trained on the remaining 5,691 human-coded posts. The 

kappa for both tests, 0.902, was well above the benchmark that Landis and Koch (1977) 

propose for “almost perfect” agreement, 0.81. The sensitivity rate means that, on our 

random sample of 1000 blogs, 87.4% of political posts were correctly classified as political. 

The specificity rate means that 99.5% of posts classified as nonpolitical were in fact 

nonpolitical. Using the full human-coded data for training, the classifier identified 

217,727 political posts and 2,136,551 non-political posts, about 10.2% political.  

Though simply tallying the posts on any given blog that were classified as political 

and dividing by total posts gives an estimate of prevalence (percent of posts that are 

political) for that blog, that estimate would be biased. To see this, consider a blog that 

posts about politics only one percent of the time, with 10 political posts and 990 non-

political ones. In expectation, 8.74 of the 10 political articles will be classified as such. Of 

the non-political posts, 0.5% will be incorrectly classified as political, about 4.95 posts. 
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Thus, when the true prevalence is 1%, the estimation procedure of simply counting the 

number of items classified as political, will, in expectation, yield a slightly higher true 

prevalence estimate, 13.95/1000 or 1.40%. The problem is even worse at the other extreme. 

If a blog had 100% political posts, on average, only 87.4% would be classified as political 

and the expected value of the estimate would be 87.4%, much lower than the true 100%. 

The problem with the naïve estimator is that it does not take into account the error rate of 

the classifier. The challenge of estimating true prevalence from observed prevalence (p) 

when there is a known error rate in the observation technique (the classifier in our case) 

has been addressed in medical statistics work (Zhou et al 2002). We generate corrected 

prevalence estimates (p*) on a per blog basis according to the following: 

 
For example, when the observed rate p was 1%, we estimate a lower adjusted rate 

p* of 0.6%, and when the observed p is less than 0.5%, the adjusted p* will be negative. 

When the observed rate p was 10%, we estimate an adjusted rate p* of 10.9%. And when 

the observed rate p was 70%, we estimate an adjusted rate p* of 80.0%. Because our 

selection of human-coded posts only included a few posts from some of less prominent 

blog genres, we were not able to report or use specificity and sensitivity on a per-genre 

basis. 

We then use our corrected estimates of p* to generate revised estimates of the total 

number of political and nonpolitical posts on each blog. We sum up those estimates to 

estimate the cumulative prevalence of political posts in various collections of blogs, 

including the collection of blogs that rarely if ever contain political posts. Note that when 

p* is negative for a blog, that blog’s contribution to the estimated cumulative total will be 

negative. This procedure is equivalent to adding up the number of posts for a whole 

collection that were classified as political or non-political to generate a value p for the 

p*
p  (1 specificity)

sensitivity  (1 specificity)
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collection, and then applying the correction to generate a value p* for the whole 

collection. 

Classification of blogs 

We then classified each of these blogs according to genre. To do this, we used Amazon’s 

Mechanical Turk micro-task market. Each blog was shown to five users of Mechanical 

Turk, who were each asked to enter the title of the blog (as a check to ensure the rater 

looked at the blog), and to identify the category to which it belonged from a list of eight 

categories (with brief descriptions; Table VI-3) or to mark it as a spam blog or a blog not 

written entirely in English. In some cases, particularly bad workers were identified and 

their completed tasks were reassigned to other workers, so these tasks received more than 

five ratings. If the blog was still active, the workers were shown the blog in an iframe; if 

not, the workers were shown an iframe with text-only copies of the posts and titles. We 

then used the get-another-label tool13, developed by Panos Ipeirotis, to reconcile the 

ratings from different Mechanical Turk workers (Sheng et al 2008). On 315 blogs labeled 

by both a researcher and the Mechanical Turk process, the overall kappa was 0.72. This 

classification process also identified 96 additional blogs that were written only partially in 

English or that were spam; these blogs were removed from our sample. This left 2,354,278 

posts from 8,765 blogs. 

                                                       
13 http://code.google.com/p/get-another-label/ 
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Category Description n % 

Posts / 
week / 
blog 

Comments 
/ post 

Mean 
(stdev) 

Mean 
(stdev) 

Diary Individual, group, or family blog with news 
about life. Includes blogs that are collections 
of links, images, or videos that interested the 
author if the collection does not fit into one of 
the other categories. 

5307 60.5% 3.62 
(5.17) 

2.33
(6.10) 

Hobby & 
Fan 

Blog about a particular hobby, interest, or 
activity (such as crafts, photography, 
programming, or cooking). Also includes 
blogs by enthusiasts of a particular TV show, 
celebrity, actor, movie, musical group, or 
sports team. Incudes travel and exercise 
diaries (e.g. someone who writes about 
running or cycling as a hobby). 

2148 24.5% 5.81 
(5.81) 

2.20
(8.30) 

Professional 
& sales 

Blog for a trade, educational, or professional 
association, or containing news, tips, or advice 
for people in a particular career or line of 
work, or an official blog to promote a product, 
service, or event, to interact with customers, 
or to provide news about a business or other 
organization. 

519 5.9% 40.1 
(567.42) 

2.20
(8.81) 

Politics Blog with commentary or news on issues or 
controversies in politics and government 

422 4.8% 11.89 
(18.47) 

3.11
(12.88) 

Religion Blog by/about religious organizations, daily 
devotionals, or meditations. Does not include 
life diaries by people for whom religion is a 
big part of their life. 

200 2.3% 4.06 
(4.49) 

2.06
(5.75) 

Civic & issue Blog that promotes a particular social or 
political change, such as an environmental 
organization 

81 0.9% 7.85 
(13.12) 

1.35
(3.71) 

Health & 
Wellness 

Blog with tips, suggestions, support, or advice 
for health and/or wellness. Includes patient 
diaries and blogs with advice about exercise 
for health. 

66 0.8% 3.75 
(3.87) 

2.16
(5.91) 

Ethnic / 
cultural 

Blog about a particular culture or heritage. 22 0.3% 2.27 
(5.54) 

1.35
(2.92) 

Table VI-3 Blogs by category. Descriptions are those provided to Mechanical Turk workers. 
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Results 

The majority of these 8,675 blogs were diary (60.5%) or hobby and fan blogs (24.5%), with 

political blogs accounting for less than 5% of our sample (Table VI-3). The political blogs 

had more posts per week than any other category except for professional and sales blogs, 

and also had, on average, more comments per post than other blog categories.  

Not surprisingly, many blogs in our data set contained no political posts (Figure 

VI-1); we estimate that 30% of blogs contained no political posts and another 60% post 

about politics between 0% and 20% of the time, with an estimated overall prevalence (p*) 

3.0%, across blogs that each post about politics less than 20% of the time. Cumulatively, 

however, because there are so many of these blogs, they account for 25% of total political 

blog posts (Figure VI-2). 

 
Figure VI-1 Most blogs have few political posts. 
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Figure VI-2 Many political posts appear in blogs that each have few political posts. 

The frequency of political posts on non-political blogs fluctuated mildly, tracking 

national political events in the United States (Figure VI-3), most noticeably the November 

2006 election and an increase leading up to and early in the 2008 primary season. The 

data for early 2006 are noisy because there are fewer blogs in the sample from that time. It 

is also possible that a portion of the measured increase in political discussion during the 

primary season results from the classifier having an easier time detecting political posts 

containing candidates’ names. 
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Figure VI-3 Portion of total posts, by day, that are political from blogs that are political <20% of the 
time. Data points per day, with seven-day two-sided moving average (blue line).  

The prevalence of political posts varied across the categories (Figure 4). As one 

would expect, political blogs had the greatest prevalence of political posts (but even some 

political bloggers showed quite a bit of difficulty staying on their professed topic), 

followed by civic and issue blogs, which included town news sites or advocacy sites for a 

particular issue (e.g., environmental concerns) or a particular group (e.g., LGBT blogs). 

Some categories showed several more political outliers, such as diary blogs by people who 

had a lot to say about politics, and hobby or professional blogs where some hobbies or 

professions might be very connected to political issues (e.g., guns and gun control laws) 

while others are quite removed (e.g., scrapbooking). In general, all categories except 

politics and civic & issue had at least three quarters of the blogs with less than 20% 

political posts. On the other hand, in all categories, even personal diaries, hobby, and 

health & wellness, at least half the blogs had at least one political post. 

2006 US elections, 
including Congressional midterms  

Saddam Hussein executed 

2007 US elections 

Iowa caucuses 
& New Hampshire primary  

Super Tuesday 

Ohio, Texas, 
VT & RI Primaries 
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Figure VI-4 Prevalence of political posts by blog category. (box is first quartile, median, upper quartile; 
whiskers extend from smallest to maximum value, up to 1.5 times the interquartile range; individual blogs 
are shown as outliers.) 
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Are political posts treated as taboo on non-political blogs?  

The next question we addressed using the Blogger.com sample is whether politics is 

treated as a taboo subject on the non-political blogs. In these non-political contexts, do 

blog readers simply ignore and choose not to respond to political posts? Do they 

discourage the author from posting such material? Though exposure to diverse points of 

view may be achieved simply by having diverse readers encounter political opinions on 

others’ blogs, interaction is required for a deliberative conversation to occur. 

Many of the authors seem to be self-conscious about their decision to bring 

politics into the non-political spaces, beginning or ending the post with statements such 

as “Rambling, Uninformed, Brutish Political Rant of the Week,” “forgive my outrage,” 

“okay, time to get off the soapbox,” or “please excuse my rant.” This appeared to be 

particularly true for posts that had politics as their main topic. Future work should 

examine, in detail, the prevalence and nature of such introductions or warnings before 

making a political post in a non-political blog.  

Despite this written hesitation from the authors, political posts on nonpolitical 

blogs receive as many comments as nonpolitical posts on the same blog. These posts also 

did not appear to be getting more responses just because they are an exception to the 

blog’s normal content: political posts on political blogs also receive more comments than 

the non-political posts, suggesting that the political posts on the nonpolitical blogs do not 

receive more comments simply because they are about a different topic than other posts 

on the blog. 

Table VI-4 shows the means for each group, but this analysis is problematic 

because it treats posts from the same blog as independent, when they are, in fact, not. To 

better model the comment count, we computed a negative binomial regression model for 

a post’s expected comment count based on whether the post was political or not (an 

indicator variable), whether the blog was categorized as political or not (an indicator 
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variable), and the interaction effect between whether the post was political and whether 

the blog was political. Because this analysis compared the comment counts for the 

different posts on the same blog, and because one of the explanatory variables (whether a 

blog is political) was constant for each blog, we used random effects methods on this 

panel data set (Table VI-5). The regression model indicates that political posts on non-

political blogs receive about the same number of comments as non-political posts on 

those blogs. 

 

N 

Mean comments on 

Political Posts Nonpolitical posts 

Non-political blogs 8343 2.506 2.250 

Political blogs 422 3.489 2.658 
Table VI-4 Mean comments per post by post and blog type. Note that the means presented in this table 
are highly influenced by more prolific blogs, while blogs with few posts have little influence. 

 IRR Std err p-value 

Political post 1.006 0.004 ns 

Political blog 0.273 0.018 <0.001 

Political post * political blog 1.297 0.011 <0.001 

Log-likelihood -3480872.9 
Table VI-5 Negative binomial regression model for the expected comments on a post, given whether the 
post was political and whether the blog was political. n=2,354,278 posts across 8,765 blogs. Wald ߯	2	ൌ	
44055.34, p < 0.001. 

According to the regression model, the political blogs in our sample tended to 

receive fewer comments overall, but received more comments on their political posts than 

on their non-political posts. This appears to be contrary to the means presented in Table 

VI-4. One reason for this is that the means in Table VI-4 are strongly influenced by the 

blogs with the most posts. 

In addition, looking at the mean comments per blog, comparing the distributions 

for political and non-political blogs, it turns out that, for most parts of the distribution, 

political blogs get fewer comments per blog. In the 95th to 99th percentiles of the respective 

distributions, however, the political blogs get about twice as many comments per post as 
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non-political blogs. This increases the means, but has little effect on the maximum 

likelihood estimation of the coefficient for political blogs, because only a small percentage 

of political blogs have higher comments per entry.14 

We were also curious whether political posts increased the expected number of 

authors in each comment thread, or whether the number of authors remained the same or 

even decreased, with participants engaging in more back-and-forth discussion. We repeat 

the previous analysis with the author count (number of authors in the comment thread) as 

the dependent variable, adding comment count as an independent variable, and using 

only posts with comments (Table VI-6). For the purpose of this analysis, all anonymous 

comments on a thread were treated as written by the same author. For posts with the same 

number of comments, political posts appear to elicit comments from slightly more 

authors (4.5% more), regardless of the type of blog. 

 IRR Std Error p-value 

Political post 1.045 0.00346 <0.001 

Political blog 0.981 0.01316 ns 

Political post * political blog 0.998 0.00644 ns 

Comment count 1.009 0.00001 <0.001 

Log-likelihood -2124540.5 
Table VI-6 Negative binomial regression model for the expected number of authors appearing in a 
post’s comments, given whether the post was political, whether the blog was political, and the number 
of comments. n=1,050,515 posts with comments across 8,765 blogs. Wald ߯	2	ൌ	294214.08, p < 0.001.  

Finally, we tested whether anonymous comments were more prevalent on political 

posts on non-political blogs, something that might happen if people wanted to speak up 

but did not want to reveal their identity (potentially putting their relationship at risk). For 

                                                       
14 It was, however, sensitive to one outlying news blog, classified as political, that had more than 25,000 
posts and more than six comments per post, but relatively few posts (25%) classified as political. Removal 
of this blog resulted in IRR estimates of 0.47 for a political blog (p<0.001) and 1.08 for a political post on a 
political blog (p<0.001). These estimates are more consistent with estimates from models based on 20% 
sub-samples of blogs drawn from our sample. 

The estimates of the effect of political posts in non-political blogs were quite stable in all models, 
consistently indicating that political posts in non-political blogs get very slightly more comments than non-
political posts in those blogs. 
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this analysis, we repeated the above procedure, but restricted it to posts, with comments, 

on nonpolitical blogs, and added the author count (rather than comment count) as a 

control (Table VI-7). We see a 15% increase in the expected amount of anonymous 

comments for political posts on nonpolitical blogs.  

 IRR Std Error p-value

Political post 1.152 0.0098 <0.001

Author count 1.013 0.0001 <0.001

Log-likelihood -625029.01 
Table VI-7 Negative binomial regression model for the expected number of anonymous comments 
appearing in a post’s comments, given whether the post was political, whether the blog was political, 
and the number of authors. n=974,528 posts with comments across 8,343 non-political blogs. Wald ߯	2	ൌ	
20830.1, p < 0.001.  

CONTENT ANALYSIS 

Because many of the political posts on non-political blogs also discussed other subjects, 

we sought to measure whether the comments on nonpolitical blogs engaged the political 

content of the post, talked about something else, or discouraged the post’s author from 

discussing politics on their blog. Unfortunately, the classifier for whether a post was 

political or not was impractical to use on the comments: the comments tended to be 

briefer, and, taken out of context, were likely to produce unreliable results. Instead, we 

sampled 250 posts and associated comment threads at random from the political posts on 

non-political blogs that had at least one comment. Researchers first verified that each of 

these posts had some political content, and coded it for whether it was about other topics 

as well. For those posts that were indeed political, we coded each responding comment 

for: 

 whether it was spam,  

 whether it engaged the political content of the post, 

 whether the commenter agreed, disagreed, or neither with the blogger’s political 

position (according to the criteria for agreement in Gilbert et al 2009), and 

 whether the author said the blog post’s content did not belong. 
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In total, we coded 1188 comments on 244 political posts (the other 6 had been 

misidentified as political by the automated classifier); 23 of these comments were removed 

as spam comments. 56 comments on 42 posts were coded by at least two researchers; 

inter-rater reliability on each of the coding categories is shown in Table VI-8. 

Decision % agreement κ 

Po
st Had some political content? 100% 1.00 

Had other, non-political topics? 100% 1.00 

C
om

m
en

t Spam? 98% 0.87 

Engaged political content of post? 93% 0.79 

Agreed, disagreed, or neither with post’s author? 91% 0.84 

Said the blog post’s political content did not belong? 100% 1.00 
Table VI-8 Inter-rater reliability on 56 comments on 42 blog posts. 

Of these 244 political posts on nonpolitical blogs, 60 (25%) also talked about at 

least one other subject that was not politics. The posts had an average of 4.8 non-spam 

comments per post, which drops to 990 comments (an average of 4.1 per post) once 

comments by the blog post author are excluded (Table VI-9). 

 n % 

Engaged political content of post 823 83% 

Among comments engaging with political content 

Expressed 

agreement 334 41% 

neither / balanced 370 45% 

disagreement 119 14% 
Table VI-9 Analysis of 990 comments by people other than the post author and not by spammers on 244 
political posts on nonpolitical blogs. 

Because many of these posts contained other topics, and because even a political 

post might prompt a friend to post a comment about simply catching up, we assessed how 

many of these comments engaged the political content of the original blog post or a 

subsequent comment. 961 (83%) of the 1165 total comments, and 823 (83%) of the 

comments by people other than the blog post author, engaged the political content in 

some way. While a more thorough analysis of the discourse quality is beyond the scope of 
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this paper, we note that these comments included a mix of thoughtful critiques of policies, 

personal stories, advocacy for candidates and issues, and ad-hominem attacks on or crass 

jokes about the appearance or behavior of politicians and their family members. Only two 

comments (0.2%) suggested that politics did not belong on the blog. 

We next looked at the rates of agreement and disagreement among the political 

comments on these nonpolitical posts, considering just the comments by someone other 

than the blog author. Of these comments, 334 expressed agreement with the post’s author 

(41%), 119 expressed disagreement (14%), and 370 (45%) expressed neither disagreement 

nor agreement or were balanced between the two. This deviates only slightly from the 

agreement to disagreement ratio that Gilbert et al found among political blogs (47% 

agreement, 13% disagreement, and 40% neither), though it does so in the direction of 

slightly more disagreeing or neutral comments (an agreement to disagreement ratio of 2.9 

rather than 3.6). 

Discussion 

The volume of political discussion on non-political blogs from Blogger.com is substantial, 

both in the posts and the comments on these posts. This offers some support for 

Wojcieszak and Mutz’s finding that people report more exposure to cross-cutting political 

opinions in non-political online spaces than in political ones (2009), in that political 

discussion does exist on non-political blogs. This work adds an important qualifier, 

though: even if people are encountering challenging or disagreeable political opinions 

when reading non-political blogs, they are at best only slightly more likely to voice that 

disagreement in the blog comments than commenters on political blogs. A variety of 

factors may contribute to the high agreement to disagreement ratio observed in the 

comments, including political homophily among social networks (Goel et al 2010) and a 

tendency of those who disagree to stay quiet in order to maintain social harmony (Noelle-

Neumann 1993). 
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We might expect similar volumes of political discussion in at least some other 

online non-political spaces – other blogging services or social network sites such as 

Facebook and Twitter. A Pew Internet and American Life Project survey (2011) shows 

that a portion of adults are publicly posting political content and supporting or following 

political figures and issues on Twitter and other non-political social network sites, and 

even more are learning about their friends’ political preferences as a result of these 

actions. One important direction for future research is to investigate how different formats 

and design features differ in their affordances for political discussion. For example, it may 

be that blogs are treated as a zone of personal expression and so it is socially acceptable for 

the author to write occasionally about politics, while the same freedom may not occur in 

forums or email lists that have formed around non-political topics. 

If many online non-political spaces serendipitously expose their participants to 

diverse political information, they offer a counter to the Internet’s increased affordances 

for crafting an agreeable political information diet. Yes, people may choose news websites 

or configure news aggregators to show opinions with which they agree, but they will still 

be participating in other online spaces that bring together people with diverse views and 

who sometimes talk about those views. The demise of the inadvertent audience (Prior 

2007, Bennett & Iyengar 2008) has likely been overstated. Though no longer coupled with 

broadcast media, people are serendipitously and inadvertently being exposed to political 

news and information across the many online spaces in which people interact and share 

information. So long as designers of social sites do not begin naïvely trying to filter out 

disagreeable political posts or opinions in personalized feeds (a design choice that one 

might fear from a reading of Pariser 2011), these non-political spaces may continue to 

keep selective exposure preferences in check. 

While we have shown that at least some non-political spaces contribute to online 

political discourse, and that they do include at least some diversity in views, we have yet to 

evaluate whether these non-political spaces yield more deliberative political discussions 
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than political spaces. I believe that better understanding and characterizing the political 

discussion occurring in online, non-political spaces is a critical area for future research. 
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CHAPTER VII 
 

Summary 

In my dissertation research, I set out to (1) better understand preferences for diversity in 

the political information people access online and to (2) develop and assess techniques to 

select and present challenging items in ways that are appealing to challenge averse readers. 

I also explored whether non-political spaces contribute to political discourse online, if 

such spaces might be important sources of exposure to counter-attitudinal political 

viewpoints, and whether people choose to engage such discussion when they encounter it. 

I worked on the first two goals in the context of online news aggregators such as 

Digg and Reddit. To my surprise, I found that some people show diversity-seeking 

behavior and others show challenge-averse behavior – there is no average human who can 

be described by one theory or the other (Chapter IV). Some simple presentation 

techniques – highlighting agreeable items or highlighting the agreeable items and placing 

them first in the news aggregator’s results – did not increase subjects’ satisfaction with lists 

containing challenging items. In Chapter V, I sketch a design space for techniques to 

present feedback about the political leaning of the items one reads, including foresight, 

“currentsight”, and hindsight widgets, and a design for a study to test at least a hindsight 

widget. To complement work on presentation techniques, I developed the Sidelines 

algorithm (Chapter II), designed to select more representative result sets from user votes, 

and evaluated it against the approval voting algorithm on existing data sets and in an 
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online experiment, and found that the Sidelines algorithm does increase the diversity of 

result sets. 

To address the final goal, I studied an example of non-political online spaces, 

where diverse discussion may already occur (Chapter VI). Analysis of a random sample of 

blogs from Blogger revealed that, at least on that site, half of the total political posts occur 

on blogs that post about politics less than half of the time. Moreover, when readers 

encounter these posts, they do not treat them as taboo, and they engage with the posts’ 

political content. These results support recent survey work by Wojcieszak and Mutz (2009) 

that found that people report they are most likely to encounter cross-cutting political 

opinions on non-political websites, not on political or news sites. These inadvertent or 

serendipitous encounters with political viewpoints other than one’s own are likely to 

continue to limit the effects of selective exposure preferences, even if people do 

increasingly access niche or personalized news websites when they seek out political news. 

Further work should explore the role of these non-political spaces in online political 

deliberation and attitude formation in much more detail. In particular, researchers should 

code threads in non-political and political spaces for characteristics such as signs of 

listening and openness to changing opinions, the number of arguments represented, the 

number of positions represented, and tone or civility.  

This research advances our knowledge of how the preferences predicted by 

selective exposure theory translate to behavior online, a topic important to political 

theorists and designers and moderators of online political news and opinion sites and 

non-political spaces, and emphasizes that selective exposure research must consider 

individual differences. It has also resulted in at least one tool (the Sidelines algorithm), 

which could be used in practice today.    
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CHAPTER VIII 
 

What’s next? 

In the introduction, I described five research challenges for understanding, and perhaps 

decreasing, the challenge-averse behavior that selective exposure theory predicts for how 

people access political news and information online. Four challenges address political 

news aggregators: (1) understanding preferences and behaviors for accessing political 

information online, (2) exploring ways to nudge challenge-averse individuals to read or 

consider more diverse political news, (3) studying techniques to help people engage with 

diverse points of views, and (4) evaluating the actual outcomes of achieving these diversity 

goals. The fifth challenge involves understanding the political information sharing and 

discussion that happens in non-political spaces online. 

My studies touch only three of these vital research areas. In this chapter, I review 

contemporary research that complements my work and recent trends in access to news 

and political information. I then suggest future directions and potential next steps for the 

study of selective exposure preferences and behavior on the Internet. 

Contemporary research 

Others have made concurrent progress on understanding existing preferences and 

behaviors (e.g., Wojcieszak & Mutz 2009, Park 2011) and on the selection and 

presentation challenges (e.g., Park 2009, Oh 2009). Some of this work confirms or 

complements my results, particularly with respect to individuals’ preferences for exposure 
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to diverse points of view and the online spaces in which that exposure may occur. The 

research on techniques for selecting and presenting diverse political items has identified 

some approaches that appear to be more promising than the ones I have designed and 

evaluated to date. 

The NewsCube project, from researchers at KAIST (Park 2009), is particularly 

worth noting. NewsCube groups news articles on a topic into different clusters (“aspects”). 

The system uses an unsupervised approach to build clusters: it first extracts keywords in 

each article in a topic, and then uses hierarchical agglomerative clustering to build article 

clusters based on keyword similarity. Readers select and read an article on a topic, but are 

also shown that there are other clusters – and thus likely other perspectives or viewpoints 

– available to explore on the topic. When presented with this interface, readers explored 

more topics than they did using the Google News interface, in which articles on any given 

topic are not further clustered. Showing these clusters seems to have increased subjects’ 

curiosity about the different aspects to a story, and it appears that this technique can, at 

least in the short term, decrease the effects of selective exposure preferences.  

Other researchers have tackled the third broad area: encouraging people to engage 

with and consider the diverse opinions they do encounter online. Kriplean et al developed 

two systems to promote “listening” online. Reflect adds an additional layer of discussion to 

comment systems in tools such as the blogging platform WordPress (Kriplean et al 2012a). 

Rather than being general purpose, though, this level of comments is meant for 

summarizing others’ posts, and the original commenter can mark the quality of a 

summary up or down. The authors hoped that, by giving people a clear space in which to 

“listen” and a way for commenters to acknowledge good listening, people would focus less 

on expressing their own opinion and more on considering others’ opinions and then 

engaging them in discussion. In two field deployments – one on the tech news site 

Slashdot and the other on Wikipedia, the authors observed at least some success. In the 
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second system, ConsiderIt, the researchers developed an online voters’ guide in which 

users could craft, individually and collaboratively, pro and con lists for various ballot 

initiatives (Kriplean et al 2012b). In a field deployment, people expressed positions that 

included both pros and cons, and they engaged with positions different than their own. 

In a very different approach, Sukumaran et al (2011) conducted two lab 

experiments to test whether it is possible to foster more thoughtful commenting and 

participation in online discussion forums by priming thoughtful norms. The first 

experiment tested the effects of the behavior of other participants in the forum (social 

proof and/or modeling). The dependent variables were comment length, time taken to 

write the comments, and number of issue-relevant thoughts. Not surprisingly, being 

exposed to other thoughtful comments led people to make more thoughtful comments 

themselves. The second study tested effects of visual, textual, and interaction design 

features on the same dependent variables. The manipulations included a more subdued vs. 

more playful visual design, differing CAPTCHAs (words positively correlated with 

thoughtfulness in the thoughtful condition and words negatively correlated with 

thoughtfulness in the unthoughtful condition), and different labels for the comment box. 

The design intended to provoke thoughtfulness led to more thoughtful comments, 

suggesting that it is possible, at least in the lab, to design sites to prompt more thoughtful 

discussion. 

Increasing role of the Internet for political news & information  

Online spaces and their roles in daily life have also evolved since I started this research. 

Overall, they have become increasingly prominent. In 2010, 61% of Americans said they 

use the Internet to access news – more than radio and newspapers, and just behind 

television – and more than a quarter of Americans used smartphones to access news on 

the go (Purcell et al 2010). By 2012, online sources were the primary news source for twice 

as many Americans as were print newspapers (Pew 2012). 70% of Americans, however, 
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find the current volume and variety of news and sources overwhelming, and so, despite a 

range of choices, the majority of Internet news users access no more than two to five news 

sites (Purcell et al 2010). Curiously, the news audience actually seems to be shrinking 

somewhat – in 1996, 14% of Americans reported accessing no news in a typical day, while 

this had increased to 17% by 2010. 

While blogs were once the hotbed of discussion and conversation online, much 

more time and attention is now spent in spaces that look quite different. In contrast to 

blogs’ affordances for a single author or group of authors setting an agenda or 

conversation and then having commenters react and discuss, social sites such as Facebook 

and Twitter aggregate posts from many users in a single feed, and replies have prominence 

similar to the original post. Though these sites currently account for a small portion of 

how Americans are accessing news content – in 2012, only 9% of digital news consumers 

say that they very often follow news recommendations from Facebook or Twitter – this 

number is increasing (Pew 2012). Additionally, other, important information is 

transmitted through these channels. 37% of social network site users report posting 

political content at least occasionally, and 38% have discovered, by reading posts to social 

network sites, that friends’ political leanings were different than they believed (Rainie & 

Smith 2012). Recently introduced features will likely increase the importance of this 

channel for discovery of news, opinions, and others’ political preferences and reading 

choices. One such feature, Facebook’s Social Reader, automatically posts, in one’s feed and 

the new news ticker view, links to stories friends have recently read. Twitter now embeds 

story previews for articles that people have shared in the feed, on both the website and 

their desktop and mobile applications as part of its “expanded tweets” feature. 

A future research agenda 

The sum of my work still does not fully describe individuals’ preferences and behaviors for 

online news access, does not completely characterize online political discussion in the 
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many spaces in which it occurs, and does not prescribe a clear set of guidelines for 

designing spaces that expose people to more diverse political content. It does, however, 

advance the understanding of preferences and behaviors and help guide future design, 

engineering, and research directions. In this section, I will review what I believe are some 

important next steps. 

Preferences 

Selective exposure theory argues that people are challenge-averse and will avoid sources 

that are likely to present them with counter-attitudinal information. The study in Chapter 

IV shows that there are individual differences in these preferences. Yes, many subjects 

appeared to be challenge-averse, but a number appear to be diversity seeking. Knowing 

that there are individual differences opens the door to additional questions, including 

more nuanced understandings of preferences and how they may vary across time, topics, 

or context. 

For an individual’s instantaneous preference, does the tone or rhetorical style of a 

counter-attitudinal item affect their receptiveness to it? It will also be important to know 

whether challenge aversion or diversity seeking is an inherent trait of an individual, or 

whether this preference varies and, if so, according to what. An individual’s preferences 

and behavior may vary from topic to topic, how central an issue or position is to their 

identity, or whether or not their party or interest group currently has power. Future work 

should consider such factors as well. 

News aggregators 

The studies described in Chapters II-V focused on changes to news aggregators that 

present and select content based on reader submissions and votes. I am skeptical of the 

continued value of studying and designing primarily for these use cases, based on recent 

Pew data about where Americans access online news: only 7% of Americans access a news 

posting, ranking, or rating site such as Digg or Reddit on a daily basis, while 68% visited 
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aggregators such as Google News or AOL News (Purcell et al 2010). I caution against 

developing solutions that work only on user-curated sites such as Digg and Reddit, as such 

a trajectory may solve one problem only to find that the princess is, unfortunately, in 

another castle. Instead, researchers should focus on the large opportunity to have impact 

by developing solutions that will also work on sites such as Google News or across the web. 

Many of the techniques colleagues and I considered for Digg and Reddit, 

particularly the presentation techniques, can be applied to sites such as Google News with 

no or small changes. If clicks or likes are used as a proxy for user votes, Sidelines and its 

ilk could be used in selecting items on a broader range of sites. Next, I describe some 

approaches for selection, presentation, or some combination that merit future study. 

Beyond algorithms that rely on user votes (or proxies for votes, such as links, 

clicks, “likes”, or comments and comment sentiment), classification and clustering 

methods based on article text and features such as source and author hold potential. I had 

initially been skeptical of such approaches. The topics receiving political attention, 

political figures, and even different parties’ positions on issues can change over time, and 

thus a steady stream of hand-coded training data would be needed to correctly classify 

breaking news. Two sets of research have changed my opinion.  

First, article clustering need not match pre-defined categories to be useful. 

NewsCube shows that unsupervised clustering can group articles on emerging topics, and 

that this clustering can add value– even if the clusters are not labeled according to, or 

aligned with, traditional party positions, or labeled at all. Indeed, it is possible that 

presenting these clusters as other perspectives on the topic, rather than as corresponding 

to a partisan viewpoint, was actually an asset in encouraging exploration of more aspects 

to a story, as signals such as “left” or “right” labels might serve only to heighten readers’ 

aversion to and avoidance of counter-attitudinal clusters. At the University of Michigan, 

Sidharth Chhabra is currently working on replicating the NewsCube work in a way that is 
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suitable for a long-term field trial, and it could be available as a news aggregator on which 

researchers can conduct field experiments. Second, as discussed in Chapter V, researchers 

have shown that it is possible to use article text and other features, such as URL, to reliably 

classify articles as political or not, and, if political, as liberal or conservative (e.g., Oh et al 

2009, Gentzkow & Shapiro 2010, and Dehghani et al 2011).  

A combination of these techniques should make it possible to build a news 

aggregator on which one can test several different selection and presentation techniques. 

Such a news aggregator would also enable researchers to study whether clustering 

continues to affect reading behavior over time, or whether there is simply a novelty effect, 

and also to conduct experiments on the effects of features such as visualizations showing 

the percentage of topics explored, more normative information such as how an 

individual’s readership compares to other readers’, or progress against a goal a reader or 

the designer sets (such as balancing the character in the hindsight widget presented in 

Chapter V). One could imagine a large-scale effort to test, in the field, several selection 

and presentation techniques, as well as other features designed to influence reading 

behavior. 

Selection: Clustering vs. Partisan (e.g., liberal-conservative). Does unsupervised 

(and thus unlabeled) clustering encourage more exploration of diverse viewpoints than 

sets of articles labeled as liberal, conservative, independent, and so on? What if both sets 

were unlabeled, i.e., how much do the actual clusters matter versus their labels? Also, 

while my studies selected and displayed articles according to the classic liberal-

conservative spectrum (as have studies such as Oh 2009), this convenient simplification 

only captures one of the many dimension on which articles may vary. Other dimensions 

that selection techniques might (and arguably, should) eventually consider include 

whether an author argues from a fact-based or value-based perspective, how much an 

article differs from the reader’s position, whether arguments are supported with statistics 
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or stories, and the general tone and affect of an item. All of these, and more, may 

substantially affect how receptive an individual is to articles. 

I also remain curious about social selection techniques: selecting stories popular 

among people who are ideologically different, but perhaps socially connected to the 

reader, or similar on certain key demographics, and then revealing those connections or 

similarities when displaying the article. I will discuss some of the challenges with social 

selection of articles later in this chapter. 

Visualization techniques. In Chapter V, I outlined a range of visualization 

techniques that should be assessed. This includes techniques that reveal the predicted bias 

of an item before a user chooses to visit it (foresight) or as a user reads it (“currentsight”) 

and techniques that present the overall balance of their recent reading history (hindsight). 

As illustrated with the BALANCE man, these visualizations could communicate what the 

reader should do, not only what they are doing or have done. Injunctive norms can be 

added to foresight or hindsight widgets, such as by overlaying a negative emoticon () to 

a currentsight widget when an imbalanced reader is reading yet another affirming item, or 

a positive emoticon (☺) when a reader chooses a counter-attitudinal item.  

Commitment mechanisms could also be explored for increasing the diversity of 

news that people read. A variety of commitment mechanisms may help people live up to 

their “better selves” in their reading behavior. What if a news aggregator asked people to 

be more balanced in their reading, or to explore more topics than last week? What if a 

reader agreed to read some articles recommended by someone ideologically different in 

exchange for their counterpart reading articles they recommend? A great deal of research 

on commitments and targets could inform the design of these features to make them, 

potentially, particularly effective – for example, by having readers state not just a diversity 

goal, but how they plan to achieve it or why they think it is important at the time of their 

commitment (Locke & Latham 2002). Commitment contracts, commonly implemented 
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as “I will give money to charity x, which supports a cause I do not believe in, if I do not 

meet my goal” (Schelling 1984, Ayres 2010), may be particularly apropos for this goal: 

either read about the other side’s viewpoints or be stuck giving money to support them. 

Different processing systems. Many of these future investigations may benefit 

from consideration of and investigation into the different cognitive systems that people 

use to process information (Kahneman 2011). From work in other fields, we know that 

different types of messages can persuade differently. Some people are more persuaded by 

messages that use statistics than narrative messages, though results are mixed (Allen & 

Preiss 1997). Statistical messages engage heuristic and systematic processing, while 

narrative messaging engages only heuristic processing (Kopfman et al 1998). This may 

apply to the political space: do particular article types and presentation techniques trigger 

different processing mechanisms? Does that change how amenable or receptive people are 

to those articles, particularly attitude-challenging ones? If so, understanding which 

presentation methods and which arguments appeal to different systems may help guide 

design choices for which political news to present and how to present it.  

New spaces: Facebook and Twitter 

As mentioned previously, social network sites such as Facebook and Twitter represent a 

small but growing channel for political news discovery and sharing, and for discovery of 

friends’ and family members’ political opinions. Could these spaces become the new 

coffee shops and bowling leagues, in which diverse (or at least somewhat diverse) people 

connected for other reasons come together and share a variety of political views and 

opinions? 

The evidence here is mixed. Goel et al (2010) reported that though there is 

political homophily in Facebook networks, there is also more diversity than individuals 

believe. Explicit sharing of political affiliations or views in one’s profile, choosing to post 

political stories to one’s stream or feed, or “frictionlessly sharing” the stories one reads 
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through tools such as the Facebook Social Reader can bring that diversity to the surface. 

An important question, then, is what people do once these topics come up. On Blogger, I 

found that people do engage with political posts in non-political spaces, and even post 

disagreements with the author. I do not, however, have a measure for how many people 

choose to tune out such posts, or even stop reading a blog altogether upon discovering 

that the author holds views that are different from their own, and so I can only measure 

the positive signal: that is, how many people choose to engage by commenting on the post 

and how they choose to engage, and how that compares to non-political posts. 

Others have studied what happens when people encounter counter-attitudinal 

posts from Facebook and Twitter connections. Rainie and Smith report that 66% of social 

network site users report always ignoring posts with which they disagree, 28% report 

responding, and 5% report choosing whether or not to reply depending on circumstances. 

More troublingly, 9% of social network site users report blocking, unfriending, or hiding 

someone for political posts with which they disagreed or found offensive, and 5% report 

blocking, hiding, or unfriending someone for political posts they worried would offend 

other friends. 8% of SNS users report blocking, unfriending, or hiding someone because 

they argued about political issues on the site with the user or someone the user knows. 

Though the majority of people unfriended over political differences are weak ties such as a 

distant friend or acquaintance, one third of people who have blocked or unfriended 

another user over political posts report having done so to a close friend or family member. 

These self-reported rates are possibly depressed by confounds such as the social 

desirability effect, but are consistent with other studies that identify politically polarizing 

posts as one of the top reported reasons for unfriending or unfollowing (Sibona & 

Walczak 2011, Kwak et al 2011). It is possible, then, that features that increase exposure to 

challenging political information in the short term can promote the destruction of ties 

with others who have differing views over the long term.  
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As a research community, we should seek to understand the effects of increased 

visibility of political preferences and news consumption on exposure to diverse points of 

views and on relationships. This will also be important to the social computing 

community’s practitioners: when Facebook encourages features such as Social Reader, or 

Google decides to suddenly start broadcasting all of a user’s Reader shared items to all of 

that user’s contacts, by default, they do so at what cost to relationships? While some 

extreme views may very well warrant unfriending, it seems that most unfriending 

resulting from a revealed, politically challenging view, is a loss for individuals’ 

opportunities to learn about other views and perspectives. If this sort of unfriending were 

to become commonplace, it threatens to reduce the amount of counter-attitudinal 

information to which people are exposed, and it would be unfortunate if one of the 

primary outcomes of tools that facilitate easier sharing would be people further shaping 

their networks to exclude encounters with challenging views.  

We should, then, seek to find techniques that allow people to express their views 

without damaging relationships, and that might encourage empathy, engagement, and 

understanding, rather than revulsion and disconnection. Such techniques might involve 

selecting articles that are not too challenging to appear in the feeds seen by one’s friends 

(using some of the selection dimensions discussed earlier in this chapter), or presenting 

more challenging articles using veiled viral marketing (Hansen & Johnson 2012) – that is, 

showing that a story is popular with one or more people in your network without 

revealing who (and thus making unfriending or unfollowing that friend, based on the 

veiled post, impossible).  

Civic engagement, idea formation, and side effects 

Finally, the fourth pillar – evaluating the actual outcomes of achieving these diversity 

goals – must remain on the research horizon. Because the techniques I tested in Chapter 

IV are of limited efficacy – or none – it remains premature to test them and their effects 
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on awareness and engagement in the wild. This is, however, still an important agenda item 

going forward. As techniques to select, present, and encourage engagement with diverse 

points of view mature, we should combine different sets of best practices and most 

promising techniques into products, deploy them for months or longer in a controlled 

field setting, and measure and assess outcomes. Though political theorists argue that 

deliberation involving diverse points of view is good for democracy, this is not the only 

prediction. Others find that exposure to challenging viewpoints, particularly in 

conversational environments, can lead people to actually become more disengaged 

(Scheufele et al 2004, Wojcieszak et al 2010, Dilliplane 2011). Are some settings and 

techniques for introducing more diverse points of view more effective at producing 

desirable outcomes than others? How do individual differences interact with context and 

features to predict how someone will act after viewing challenging, agreeable, or diverse 

political articles? 

I hope that the studies presented in this dissertation, as well as my future research 

and contemporary and future work by other researchers and practitioners, will help us 

better understand individuals’ preferences and behavior for accessing political 

information online, what they do when they encounter that information, and what 

designs can nudge people toward pro-social outcomes. Through such work, we can help 

the Internet achieve its potential benefits for democratic society, rather than deliver on its 

dystopian possibilities.  
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